文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于影像组学特征的肝细胞癌患者微血管侵犯预测模型

Radiomic Feature-Based Predictive Model for Microvascular Invasion in Patients With Hepatocellular Carcinoma.

作者信息

He Mu, Zhang Peng, Ma Xiao, He Baochun, Fang Chihua, Jia Fucang

机构信息

The First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China.

Research Laboratory for Medical Imaging and Digital Surgery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

Front Oncol. 2020 Nov 5;10:574228. doi: 10.3389/fonc.2020.574228. eCollection 2020.


DOI:10.3389/fonc.2020.574228
PMID:33251138
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7674833/
Abstract

OBJECTIVE: This study aimed to build and evaluate a radiomics feature-based model for the preoperative prediction of microvascular invasion (MVI) in patients with hepatocellular carcinoma. METHODS: A total of 145 patients were retrospectively included in the study pool, and the patients were divided randomly into two independent cohorts with a ratio of 7:3 (training cohort: n = 101, validation cohort: n = 44). For a pilot study of this predictive model another 18 patients were recruited into this study. A total of 1,231 computed tomography (CT) image features of the liver parenchyma without tumors were extracted from portal-phase CT images. A least absolute shrinkage and selection operator (LASSO) logistic regression was applied to build a radiomics score (Rad-score) model. Afterwards, a nomogram, including Rad-score as well as other clinicopathological risk factors, was established with a multivariate logistic regression model. The discrimination efficacy, calibration efficacy, and clinical utility value of the nomogram were evaluated. RESULTS: The Rad-score scoring model could predict MVI with the area under the curve (AUC) of 0.637 (95% CI, 0.516-0.758) in the training cohort as well as of 0.583 (95% CI, 0.395-0.770) in the validation cohort; however, the aforementioned discriminative approach could not completely outperform those existing predictors (alpha fetoprotein, neutrophilic granulocyte, and preoperative hemoglobin). The individual predictive nomogram which included the Rad-score, alpha fetoprotein, neutrophilic granulocyte, and preoperative hemoglobin showed a better discrimination efficacy with AUC of 0.865 (95% CI, 0.786-0.944), which was higher than the conventional methods' AUCs (nomogram vs Rad-score, alpha fetoprotein, neutrophilic granulocyte, and preoperative hemoglobin at P < 0.001, P = 0.025, P < 0.001, and P = 0.001, respectively). When applied to the validation cohort, the nomogram discrimination efficacy was still outbalanced those above mentioned three remaining methods (AUC: 0.705; 95% CI, 0.537-0.874). The calibration curves of this proposed method showed a satisfying consistency in both cohorts. A prospective pilot analysis showed that the nomogram could predict MVI with an AUC of 0.844 (95% CI, 0.628-1.000). CONCLUSIONS: The radiomics feature-based predictive model improved the preoperative prediction of MVI in HCC patients significantly. It could be a potentially valuable clinical utility.

摘要

目的:本研究旨在构建并评估一种基于放射组学特征的模型,用于术前预测肝细胞癌患者的微血管侵犯(MVI)。 方法:本研究共回顾性纳入145例患者,并将其随机分为两个独立队列,比例为7:3(训练队列:n = 101,验证队列:n = 44)。为对该预测模型进行初步研究,另外招募了18例患者纳入本研究。从门静脉期CT图像中提取了1231个无肿瘤肝实质的计算机断层扫描(CT)图像特征。应用最小绝对收缩和选择算子(LASSO)逻辑回归构建放射组学评分(Rad-score)模型。之后,使用多变量逻辑回归模型建立了一个列线图,其中包括Rad-score以及其他临床病理危险因素。评估了列线图的判别效能、校准效能和临床实用价值。 结果:Rad-score评分模型在训练队列中预测MVI的曲线下面积(AUC)为0.637(95%CI,0.516 - 0.758),在验证队列中为0.583(95%CI,0.395 - 0.770);然而,上述判别方法并不能完全优于现有的预测指标(甲胎蛋白、中性粒细胞和术前血红蛋白)。包含Rad-score、甲胎蛋白、中性粒细胞和术前血红蛋白的个体预测列线图显示出更好的判别效能,AUC为0.865(95%CI,0.786 - 0.944),高于传统方法的AUC(列线图与Rad-score、甲胎蛋白、中性粒细胞和术前血红蛋白相比,P分别<0.001、0.025、<0.001和0.001)。当应用于验证队列时,列线图的判别效能仍然优于上述其余三种方法(AUC:0.705;95%CI,0.537 - 0.874)。该方法的校准曲线在两个队列中均显示出令人满意的一致性。一项前瞻性初步分析表明,列线图预测MVI的AUC为0.844(95%CI,0.628 - 1.000)。 结论:基于放射组学特征的预测模型显著改善了肝细胞癌患者术前对MVI的预测。它可能具有潜在的有价值的临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/b5f80764c8e9/fonc-10-574228-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/2423e089a688/fonc-10-574228-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/b90f864b5fd2/fonc-10-574228-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/7c96fe52482b/fonc-10-574228-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/82b5bbb2ed86/fonc-10-574228-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/b5f80764c8e9/fonc-10-574228-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/2423e089a688/fonc-10-574228-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/b90f864b5fd2/fonc-10-574228-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/7c96fe52482b/fonc-10-574228-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/82b5bbb2ed86/fonc-10-574228-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d8/7674833/b5f80764c8e9/fonc-10-574228-g005.jpg

相似文献

[1]
Radiomic Feature-Based Predictive Model for Microvascular Invasion in Patients With Hepatocellular Carcinoma.

Front Oncol. 2020-11-5

[2]
A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma.

Surg Oncol. 2019-3

[3]
A Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma.

Liver Cancer. 2019-10

[4]
A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma.

Diagn Interv Radiol. 2018

[5]
F-FDG PET/CT-based radiomics nomogram for preoperative prediction of macrotrabecular-massive hepatocellular carcinoma: a two-center study.

Abdom Radiol (NY). 2023-2

[6]
Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT.

Eur Radiol. 2019-2-15

[7]
Radiomics nomogram for prediction of microvascular invasion in hepatocellular carcinoma based on MR imaging with Gd-EOB-DTPA.

Front Oncol. 2022-11-1

[8]
Radiomics and nomogram of magnetic resonance imaging for preoperative prediction of microvascular invasion in small hepatocellular carcinoma.

World J Gastroenterol. 2022-8-21

[9]
Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma.

Eur Radiol. 2018-11-12

[10]
A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma.

Quant Imaging Med Surg. 2019-9

引用本文的文献

[1]
Radiomics Quality Score 2.0: towards radiomics readiness levels and clinical translation for personalized medicine.

Nat Rev Clin Oncol. 2025-9-3

[2]
Chinese expert consensus on the diagnosis and treatment of hepatocellular carcinoma with microvascular invasion (2024 edition).

Hepatobiliary Surg Nutr. 2025-4-1

[3]
All You Need to Know About TACE: A Comprehensive Review of Indications, Techniques, Efficacy, Limits, and Technical Advancement.

J Clin Med. 2025-1-7

[4]
Assessing microvascular invasion in HBV-related hepatocellular carcinoma: an online interactive nomogram integrating inflammatory markers, radiomics, and convolutional neural networks.

Front Oncol. 2024-9-16

[5]
Comparative analysis of the performance of hepatobiliary agents in depicting MRI features of microvascular infiltration in hepatocellular carcinoma.

Abdom Radiol (NY). 2024-7

[6]
Predicting microvascular invasion in small (≤ 5 cm) hepatocellular carcinomas using radiomics-based peritumoral analysis.

Insights Imaging. 2024-3-26

[7]
Quantitative peritumoral magnetic resonance imaging fingerprinting improves machine learning-based prediction of overall survival in colorectal cancer.

Explor Target Antitumor Ther. 2024

[8]
Enhancing preoperative diagnosis of microvascular invasion in hepatocellular carcinoma: domain-adaptation fusion of multi-phase CT images.

Front Oncol. 2024-1-25

[9]
CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis.

Clinics (Sao Paulo). 2023

[10]
Radiogenomics: a key component of precision cancer medicine.

Br J Cancer. 2023-9

本文引用的文献

[1]
Radiomic Features at Contrast-enhanced CT Predict Recurrence in Early Stage Hepatocellular Carcinoma: A Multi-Institutional Study.

Radiology. 2020-1-14

[2]
Radiomics of hepatocellular carcinoma.

Abdom Radiol (NY). 2021-1

[3]
Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network-based US radiomics model.

Eur Radiol. 2019-12-11

[4]
Cancer treatment and survivorship statistics, 2019.

CA Cancer J Clin. 2019-6-11

[5]
Effect of Microvascular Invasion Risk on Early Recurrence of Hepatocellular Carcinoma After Surgery and Radiofrequency Ablation.

Ann Surg. 2021-3-1

[6]
Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma.

J Hepatol. 2019-3-13

[7]
A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma.

Surg Oncol. 2019-3

[8]
Digital and intelligent liver surgery in the new era: Prospects and dilemmas.

EBioMedicine. 2019-2-14

[9]
Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.

Eur Radiol. 2019-1-28

[10]
A radiomics-based formula for the preoperative prediction of postoperative pancreatic fistula in patients with pancreaticoduodenectomy.

Cancer Manag Res. 2018-11-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索