Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.
BMC Med Imaging. 2021 Nov 24;21(1):178. doi: 10.1186/s12880-021-00708-y.
Most existing algorithms have been focused on the segmentation from several public Liver CT datasets scanned regularly (no pneumoperitoneum and horizontal supine position). This study primarily segmented datasets with unconventional liver shapes and intensities deduced by contrast phases, irregular scanning conditions, different scanning objects of pigs and patients with large pathological tumors, which formed the multiple heterogeneity of datasets used in this study.
The multiple heterogeneous datasets used in this paper includes: (1) One public contrast-enhanced CT dataset and one public non-contrast CT dataset; (2) A contrast-enhanced dataset that has abnormal liver shape with very long left liver lobes and large-sized liver tumors with abnormal presets deduced by microvascular invasion; (3) One artificial pneumoperitoneum dataset under the pneumoperitoneum and three scanning profiles (horizontal/left/right recumbent position); (4) Two porcine datasets of Bama type and domestic type that contains pneumoperitoneum cases but with large anatomy discrepancy with humans. The study aimed to investigate the segmentation performances of 3D U-Net in: (1) generalization ability between multiple heterogeneous datasets by cross-testing experiments; (2) the compatibility when hybrid training all datasets in different sampling and encoder layer sharing schema. We further investigated the compatibility of encoder level by setting separate level for each dataset (i.e., dataset-wise convolutions) while sharing the decoder.
Model trained on different datasets has different segmentation performance. The prediction accuracy between LiTS dataset and Zhujiang dataset was about 0.955 and 0.958 which shows their good generalization ability due to that they were all contrast-enhanced clinical patient datasets scanned regularly. For the datasets scanned under pneumoperitoneum, their corresponding datasets scanned without pneumoperitoneum showed good generalization ability. Dataset-wise convolution module in high-level can improve the dataset unbalance problem. The experimental results will facilitate researchers making solutions when segmenting those special datasets.
(1) Regularly scanned datasets is well generalized to irregularly ones. (2) The hybrid training is beneficial but the dataset imbalance problem always exits due to the multi-domain homogeneity. The higher levels encoded more domain specific information than lower levels and thus were less compatible in terms of our datasets.
大多数现有的算法都集中在对定期扫描的几个公共肝脏 CT 数据集进行分割(无气腹和水平仰卧位)。本研究主要对具有非传统肝脏形状和对比度相位推断的强度、不规则扫描条件、不同扫描对象的猪和大病理肿瘤患者的数据集进行分割,这些数据集形成了本研究中使用的多个异质数据集。
本文使用的多个异质数据集包括:(1)一个公共的增强 CT 数据集和一个公共的非对比 CT 数据集;(2)一个增强数据集,具有非常长的左肝叶和由微血管侵犯推断的大尺寸肝肿瘤的异常肝脏形状;(3)一个气腹下的人工气腹数据集和三个扫描剖面(水平/左侧/右侧卧位);(4)一个包含气腹但与人类解剖结构差异较大的巴马型和国产猪数据集。本研究旨在研究 3D U-Net 在以下方面的分割性能:(1)通过交叉测试实验在多个异质数据集之间的泛化能力;(2)在不同采样和编码器层共享方案下混合训练所有数据集的兼容性。我们通过为每个数据集设置单独的层(即数据集特定卷积),同时共享解码器,进一步研究了编码器级别的兼容性。
在不同数据集上训练的模型具有不同的分割性能。LiTS 数据集和 Zhujiang 数据集之间的预测精度约为 0.955 和 0.958,这表明它们具有良好的泛化能力,因为它们都是定期扫描的增强型临床患者数据集。对于在气腹下扫描的数据集,它们相应的不在气腹下扫描的数据集具有良好的泛化能力。高级别中的数据集特定卷积模块可以改善数据集不平衡问题。实验结果将有助于研究人员在分割这些特殊数据集时提出解决方案。
(1)定期扫描的数据集可以很好地推广到不规则的数据集。(2)混合训练是有益的,但由于多域同质性,数据集不平衡问题总是存在。与较低级别相比,较高级别编码了更多特定于域的信息,因此在我们的数据集方面不太兼容。