Suppr超能文献

基于霍奇金-赫胥黎神经元模型的经颅磁声刺激理论分析

Theoretical Analysis of Transcranial Magneto-Acoustical Stimulation with Hodgkin-Huxley Neuron Model.

作者信息

Yuan Yi, Chen Yudong, Li Xiaoli

机构信息

Department of Automation, Institute of Electrical Engineering, Yanshan University Qinhuangdao, China.

State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China.

出版信息

Front Comput Neurosci. 2016 Apr 19;10:35. doi: 10.3389/fncom.2016.00035. eCollection 2016.

Abstract

Transcranial magneto-acoustical stimulation (TMAS) is a novel stimulation technology in which an ultrasonic wave within a magnetostatic field generates an electric current in an area of interest in the brain to modulate neuronal activities. As a key part of the neural network, neurons transmit information in the nervous system. However, the effect of TMAS on the neuronal firing pattern remains unknown. To address this problem, we investigated the stimulatory mechanism of TMAS on neurons, by using a Hodgkin-Huxley neuron model. The simulation results indicated that the magnetostatic field intensity and ultrasonic power affect the amplitude and interspike interval of neuronal action potential under a continuous wave ultrasound. The simulation results also showed that the ultrasonic power, duty cycle and repetition frequency can alter the firing pattern of neural action potential under pulsed wave ultrasound. This study may help to reveal and explain the biological mechanism of TMAS and to provide a theoretical basis for TMAS in the treatment or rehabilitation of neuropsychiatric disorders.

摘要

经颅磁声刺激(TMAS)是一种新型刺激技术,其中静磁场内的超声波在大脑的感兴趣区域产生电流,以调节神经元活动。作为神经网络的关键部分,神经元在神经系统中传递信息。然而,TMAS对神经元放电模式的影响仍然未知。为了解决这个问题,我们使用霍奇金-赫胥黎神经元模型研究了TMAS对神经元的刺激机制。模拟结果表明,在连续波超声作用下,静磁场强度和超声功率会影响神经元动作电位的幅度和峰间期。模拟结果还表明,在脉冲波超声作用下,超声功率、占空比和重复频率可以改变神经动作电位的放电模式。本研究可能有助于揭示和解释TMAS的生物学机制,并为TMAS在神经精神疾病治疗或康复中的应用提供理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc6/4835452/765e90e4b460/fncom-10-00035-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验