Guevara-Vela José Manuel, Romero-Montalvo Eduardo, Mora Gómez Víctor Arturo, Chávez-Calvillo Rodrigo, García-Revilla Marco, Francisco Evelio, Pendás Ángel Martín, Rocha-Rinza Tomás
Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán C.P. 04510, Mexico City, Mexico.
Phys Chem Chem Phys. 2016 Jul 20;18(29):19557-66. doi: 10.1039/c6cp00763e.
The hydrogen bond (HB), arguably the most important non-covalent interaction in chemistry, is getting renewed attention particularly in materials engineering. We address herein HB non-additive features by examining different structures of the water hexamer (cage, prism, book, bag and ring). To that end, we rely on the interacting quantum atoms (IQA) topological energy partition, an approach that has been successfully used to study similar effects in smaller water clusters (see Chem. - Eur. J., 19, 14304). Our IQA interaction energies, , are used to classify the strength of HBs in terms of the single/double character of the donor and acceptor H2O molecules involved in the interaction. The strongest hydrogen bonds on this new scale entail double donors and acceptors that show larger values of than those observed in homodromic cycles, paradigms of cooperative effects. Importantly, this means that besides the traditional HB anticooperativity ascribed to double acceptors and donors, the occurrence of these species is also related to HB strengthening. Overall, we hope that the results of this research will lead to a further understanding of the HB non-additivity in intramolecular and intermolecular interactions.
氢键(HB)可以说是化学中最重要的非共价相互作用,尤其在材料工程领域正重新受到关注。我们在此通过研究水六聚体的不同结构(笼状、棱柱状、书本状、袋状和环状)来探讨氢键的非加和性特征。为此,我们依赖于相互作用量子原子(IQA)拓扑能量划分方法,该方法已成功用于研究较小水团簇中的类似效应(见《化学 - 欧洲杂志》,19,14304)。我们的IQA相互作用能 用于根据参与相互作用的供体和受体水分子的单/双特征来分类氢键的强度。在这个新尺度上,最强的氢键涉及双供体和双受体,其 值比在同向环(协同效应的范例)中观察到的更大。重要的是,这意味着除了归因于双受体和双供体的传统氢键反协同性之外,这些物种的出现也与氢键增强有关。总体而言,我们希望这项研究的结果将有助于进一步理解分子内和分子间相互作用中的氢键非加和性。