Department of Chemistry, George Washington University , Washington, D.C. 20052, United States.
Department of Mechanical Engineering, Interdisciplinary Materials Science Program, and Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States.
ACS Cent Sci. 2016 Mar 23;2(3):162-8. doi: 10.1021/acscentsci.5b00400. Epub 2016 Mar 2.
The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp(3) content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g(-1) (lithium) and 130 mAh g(-1) (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation.
温室气体去除过程的成本和实用性对于环境可持续性至关重要,其关键在于从碳捕获和转化技术中获得高附加值的二次应用。利用太阳能热电化学工艺(STEP),在熔融的锂碳酸盐中捕获的环境 CO2 通过使用廉价的钢电极进行电解,可高产率地生产出碳纳米纤维(CNF)和碳纳米管(CNT)。这些低成本的 CO2 衍生的 CNT 和 CNF 被证明是锂离子和钠离子电池中高性能储能材料。由于在合成的纳米结构中对 sp(3)含量进行了合成控制,因此在耐久性测试中分别测量到超过 370 mAh g(-1)(锂)和 130 mAh g(-1)(钠)的优化存储容量,且没有容量衰减,循环次数分别高达 200 和 600 次。这项工作表明,环境 CO2 被认为是一种污染物,在结合天然气联合循环发电的情况下,通过 STEP 的规模化实用,它可以在电网规模和便携式储能系统中赋予经济价值。