Vogt-Lowell Kyle, Chacko Dennis, Yang Kunran, Carsten Jace, Liu Junchen, Housley Matthew, Li Fanxing
Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, 27695-7905, USA.
School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, NE1 7RU, United Kingdom.
ChemSusChem. 2025 Mar 15;18(6):e202401473. doi: 10.1002/cssc.202401473. Epub 2024 Nov 15.
The molten-salt-mediated oxidative dehydrogenation (MM-ODH) of ethane (CH) via a chemical looping scheme represents an effective carbon capture and utilization (CCU) method for the valorization of ethane-rich shale gas and concurrent mitigation of carbon dioxide (CO) emissions. Here, stepwise experimentation with LiCO-NaCO-KCO (LNK) ternary salts (i) assessed how each component of the LNK mixture impacted ethane MM-ODH performance and (ii) explored physicochemical and thermodynamic mechanisms behind melt-induced changes to ethylene (CH) and carbon monoxide (CO) yields. Of fifteen screened LNK compositions, nine exhibited ethylene yields greater than 50 % at 800 °C while maintaining CH selectivities of 85 % or higher. LNK salts rich in LiCO content yielded more ethylene and CO on average than their counterparts, and net CO capture per cycle reached a maximum of ~75 %. Extended MM-ODH cycling also demonstrated long-term stability of a high-performing LNK medium. Density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations suggested that the molten salt does not directly activate CH. Meanwhile, an empirical model informed by experimental data and reaction thermodynamics adequately predicted overall MM-ODH performance from LNK composition and provided insights into the system's primary drivers.
通过化学循环方案进行的乙烷(CH)熔盐介导氧化脱氢(MM-ODH)是一种有效的碳捕获与利用(CCU)方法,可用于富含乙烷的页岩气增值以及同时减少二氧化碳(CO₂)排放。在此,对Li₂CO₃-Na₂CO₃-K₂CO₃(LNK)三元盐进行逐步实验,(i)评估了LNK混合物的每个组分如何影响乙烷MM-ODH性能,以及(ii)探索了熔体诱导乙烯(C₂H₄)和一氧化碳(CO)产率变化背后的物理化学和热力学机制。在筛选的15种LNK组成中,有9种在800°C时乙烯产率大于50%,同时保持C₂H₄选择性为85%或更高。富含Li₂CO₃的LNK盐平均比其对应物产生更多的乙烯和CO,每个循环的净CO捕获量最高达到约75%。延长的MM-ODH循环也证明了高性能LNK介质的长期稳定性。密度泛函理论(DFT)计算和从头算分子动力学(AIMD)模拟表明,熔盐不会直接活化CH₄。同时,一个基于实验数据和反应热力学的经验模型能够根据LNK组成充分预测整体MM-ODH性能,并深入了解该系统的主要驱动因素。