Suppr超能文献

探索突触小泡蛋白寡聚体在模型膜中的形成与结构。

Exploring the Formation and the Structure of Synaptobrevin Oligomers in a Model Membrane.

作者信息

Han Jing, Pluhackova Kristyna, Böckmann Rainer A

机构信息

Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.

Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Biophys J. 2016 May 10;110(9):2004-15. doi: 10.1016/j.bpj.2016.04.006.

Abstract

SNARE complexes have been shown to act cooperatively to enable the synaptic vesicle fusion in neuronal transmission at millisecond timescale. It has previously been suggested that the oligomerization of SNARE complexes required for cooperative action in fusion is mediated by interactions between transmembrane domains (TMDs). We study the oligomerization of synaptobrevin TMD using ensembles of molecular dynamics (MD) simulations at coarse-grained resolution for both the wild-type (WT) and selected mutants. Trimerization and tetramerization of the sybII WT and mutants displayed distinct kinetics depending both on the rate of dimerization and the availability of alternative binding interfaces. Interestingly, the tetramerization kinetics and propensity for the sybII W89A-W90A mutant was significantly increased as compared with the WT; the tryptophans in WT sybII impose sterical restraints on oligomer packing, thereby maintaining an appropriate plasticity and accessibility of sybII to the binding of its cognate SNARE partners during membrane fusion. Higher-order oligomeric models (ranging from pentamer to octamer), built by incremental addition of peptides to smaller oligomers, revealed substantial stability and high compactness. These larger sybII oligomers may induce membrane deformation, thereby possibly facilitating fast fusion exocytosis.

摘要

SNARE复合体已被证明在毫秒时间尺度的神经元传递中协同作用,以实现突触小泡融合。此前有人提出,融合中协同作用所需的SNARE复合体寡聚化是由跨膜结构域(TMD)之间的相互作用介导的。我们使用粗粒度分辨率的分子动力学(MD)模拟集合,研究了野生型(WT)和选定突变体的突触小泡蛋白TMD的寡聚化。sybII WT和突变体的三聚化和四聚化表现出不同的动力学,这既取决于二聚化速率,也取决于替代结合界面的可用性。有趣的是,与WT相比,sybII W89A-W90A突变体的四聚化动力学和倾向显著增加;WT sybII中的色氨酸对寡聚体堆积施加空间限制,从而在膜融合过程中维持sybII与其同源SNARE伙伴结合的适当可塑性和可及性。通过向较小的寡聚体中逐步添加肽构建的高阶寡聚体模型(从五聚体到八聚体)显示出显著的稳定性和高紧凑性。这些更大的sybII寡聚体可能会诱导膜变形,从而可能促进快速融合性胞吐作用。

相似文献

9
Conformation of the synaptobrevin transmembrane domain.突触小泡蛋白跨膜结构域的构象
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8378-83. doi: 10.1073/pnas.0602644103. Epub 2006 May 18.

引用本文的文献

8
Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains.SNARE蛋白跨膜结构域对胞吐融合孔的调控
Front Mol Neurosci. 2017 Oct 10;10:315. doi: 10.3389/fnmol.2017.00315. eCollection 2017.
9
The Multifaceted Role of SNARE Proteins in Membrane Fusion.SNARE蛋白在膜融合中的多方面作用
Front Physiol. 2017 Jan 20;8:5. doi: 10.3389/fphys.2017.00005. eCollection 2017.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验