Suppr超能文献

利用波动的全局和局部特征进行癫痫发作预测

Seizure Prediction Using Undulated Global and Local Features.

作者信息

Parvez Mohammad Zavid, Paul Manoranjan

出版信息

IEEE Trans Biomed Eng. 2017 Jan;64(1):208-217. doi: 10.1109/TBME.2016.2553131. Epub 2016 Apr 12.

Abstract

In this study, a seizure prediction method is proposed based on a patient-specific approach by extracting undulated global and local features of preictal/ictal and interictal periods of EEG signals. The proposed method consists of feature extraction, classification, and regularization. The undulated global feature is extracted using phase correlation between two consecutive epochs of EEG signals and an undulated local feature is extracted using the fluctuation and deviation of EEG signals within the epoch. These features are further used for classification of preictal/ictal and interictal EEG signals. A regularization technique is applied on the classified outputs for the reduction of false alarms and improvement of the overall prediction accuracy (PA). The experimental results confirm that the proposed method provides high PA (i.e., 95.4%) with low false positive per hour using intracranial EEG signals in different brain locations of 21 patients from a benchmark dataset. Combining global and local features enables the transition point to be determined between different types of signals with greater accuracy, resulting successful versus unsuccessful prediction of seizure. The theoretical contribution of this study may provide an opportunity for the development of a clinical device to predict forthcoming seizure in real time.

摘要

在本研究中,提出了一种基于患者特异性方法的癫痫发作预测方法,通过提取脑电图(EEG)信号发作前期/发作期和发作间期的波动全局特征和局部特征。所提出的方法包括特征提取、分类和正则化。利用EEG信号两个连续时段之间的相位相关性提取波动全局特征,并利用时段内EEG信号的波动和偏差提取波动局部特征。这些特征进一步用于发作前期/发作期和发作间期EEG信号的分类。对分类输出应用正则化技术以减少误报并提高整体预测准确率(PA)。实验结果证实,所提出的方法使用来自基准数据集的21名患者不同脑区的颅内EEG信号,以每小时低误报率提供了高PA(即95.4%)。结合全局特征和局部特征能够更准确地确定不同类型信号之间的转换点,从而成功与不成功地预测癫痫发作。本研究的理论贡献可能为开发实时预测即将发生癫痫发作的临床设备提供机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验