Suppr超能文献

在迪士尼乐园麻疹疫情期间进行有效的疫苗宣传。

Effective vaccine communication during the disneyland measles outbreak.

作者信息

Broniatowski David A, Hilyard Karen M, Dredze Mark

机构信息

Department of Engineering Management and Systems Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA.

Department of Health Promotion & Behavior, College of Public Health, University of Georgia, Athens, GA, USA.

出版信息

Vaccine. 2016 Jun 14;34(28):3225-8. doi: 10.1016/j.vaccine.2016.04.044. Epub 2016 May 11.

Abstract

Vaccine refusal rates have increased in recent years, highlighting the need for effective risk communication, especially over social media. Fuzzy-trace theory predicts that individuals encode bottom-line meaning ("gist") and statistical information ("verbatim") in parallel and those articles expressing a clear gist will be most compelling. We coded news articles (n=4581) collected during the 2014-2015 Disneyland measles for content including statistics, stories, or bottom-line gists regarding vaccines and vaccine-preventable illnesses. We measured the extent to which articles were compelling by how frequently they were shared on Facebook. The most widely shared articles expressed bottom-line gists, although articles containing statistics were also more likely to be shared than articles lacking statistics. Stories had limited impact on Facebook shares. Results support Fuzzy Trace Theory's predictions regarding the distinct yet parallel impact of categorical gist and statistical verbatim information on public health communication.

摘要

近年来,疫苗拒绝率有所上升,这凸显了进行有效风险沟通的必要性,尤其是在社交媒体上。模糊痕迹理论预测,个体同时对底线意义(“主旨”)和统计信息(“逐字记录”)进行编码,那些表达清晰主旨的文章将最具说服力。我们对在2014 - 2015年迪士尼乐园麻疹疫情期间收集的新闻文章(n = 4581)进行编码,内容包括有关疫苗和疫苗可预防疾病的统计数据、故事或底线主旨。我们通过文章在脸书上的分享频率来衡量其具有说服力的程度。分享最广泛的文章表达了底线主旨,不过包含统计数据的文章也比缺乏统计数据的文章更有可能被分享。故事对脸书分享的影响有限。结果支持了模糊痕迹理论关于分类主旨和统计逐字信息在公共卫生沟通中独特但并行影响的预测。

相似文献

1
Effective vaccine communication during the disneyland measles outbreak.
Vaccine. 2016 Jun 14;34(28):3225-8. doi: 10.1016/j.vaccine.2016.04.044. Epub 2016 May 11.
2
Facebook Pages, the "Disneyland" Measles Outbreak, and Promotion of Vaccine Refusal as a Civil Right, 2009-2019.
Am J Public Health. 2020 Oct;110(S3):S312-S318. doi: 10.2105/AJPH.2020.305869.
3
Social Media Sharing of Articles About Measles in a European Context: Text Analysis Study.
J Med Internet Res. 2021 Nov 8;23(11):e30150. doi: 10.2196/30150.
4
Facebook and Twitter vaccine sentiment in response to measles outbreaks.
Health Informatics J. 2019 Sep;25(3):1116-1132. doi: 10.1177/1460458217740723. Epub 2017 Nov 17.
6
Tweeting about measles during stages of an outbreak: A semantic network approach to the framing of an emerging infectious disease.
Am J Infect Control. 2018 Dec;46(12):1375-1380. doi: 10.1016/j.ajic.2018.05.019. Epub 2018 Jun 19.
7
Social media as a platform for health-related public debates and discussions: the Polio vaccine on Facebook.
Isr J Health Policy Res. 2016 Nov 10;5:34. doi: 10.1186/s13584-016-0093-4. eCollection 2016.
8
Revisiting the 2014-15 Disneyland measles outbreak and its influence on pediatric vaccinations.
Hum Vaccin Immunother. 2021 Nov 2;17(11):4210-4215. doi: 10.1080/21645515.2021.1972707. Epub 2021 Sep 8.
9
Storytelling in the context of vaccine refusal: a strategy to improve communication and immunisation.
Med Humanit. 2016 Mar;42(1):31-5. doi: 10.1136/medhum-2015-010761. Epub 2015 Oct 5.
10
Semantic network analysis of vaccine sentiment in online social media.
Vaccine. 2017 Jun 22;35(29):3621-3638. doi: 10.1016/j.vaccine.2017.05.052. Epub 2017 May 27.

引用本文的文献

3
Facebook's shared articles on HPV vaccination: analysis of persuasive strategies.
BMC Public Health. 2024 Jun 24;24(1):1679. doi: 10.1186/s12889-024-19099-0.
4
12-year observation of tweets about rubella in Japan: A retrospective infodemiology study.
PLoS One. 2023 May 8;18(5):e0285101. doi: 10.1371/journal.pone.0285101. eCollection 2023.
6
Gist Representations and Decision-Making Processes Affecting Antibiotic Prescribing for Children with Acute Otitis Media.
MDM Policy Pract. 2022 Jul 26;7(2):23814683221115416. doi: 10.1177/23814683221115416. eCollection 2022 Jul-Dec.
7
8
Supporting Health and Medical Decision Making: Findings and Insights from Fuzzy-Trace Theory.
Med Decis Making. 2022 Aug;42(6):741-754. doi: 10.1177/0272989X221105473. Epub 2022 Jun 23.
9
A randomized controlled trial of a video intervention shows evidence of increasing COVID-19 vaccination intention.
PLoS One. 2022 May 19;17(5):e0267580. doi: 10.1371/journal.pone.0267580. eCollection 2022.
10
Viruses, Vaccines, and COVID-19: Explaining and Improving Risky Decision-making.
J Appl Res Mem Cogn. 2021 Dec;10(4):491-509. doi: 10.1016/j.jarmac.2021.08.004. Epub 2021 Dec 13.

本文引用的文献

1
Comparing the Relative Efficacy of Narrative vs Nonnarrative Health Messages in Reducing Health Disparities Using a Randomized Trial.
Am J Public Health. 2015 Oct;105(10):2117-23. doi: 10.2105/AJPH.2014.302332. Epub 2015 Apr 23.
2
Efficacy of a web-based intelligent tutoring system for communicating genetic risk of breast cancer: a fuzzy-trace theory approach.
Med Decis Making. 2015 Jan;35(1):46-59. doi: 10.1177/0272989X14535983. Epub 2014 May 14.
4
Do personal stories make patient decision aids more effective? A critical review of theory and evidence.
BMC Med Inform Decis Mak. 2013;13 Suppl 2(Suppl 2):S9. doi: 10.1186/1472-6947-13-S2-S9. Epub 2013 Nov 29.
5
Social media and organ donor registration: the Facebook effect.
Am J Transplant. 2013 Aug;13(8):2059-65. doi: 10.1111/ajt.12312. Epub 2013 Jun 18.
6
All stories are not alike: a purpose-, content-, and valence-based taxonomy of patient narratives in decision aids.
Med Decis Making. 2013 Jan;33(1):4-13. doi: 10.1177/0272989X12463266. Epub 2012 Oct 11.
7
Who gets a teach-back? Patient-reported incidence of experiencing a teach-back.
J Health Commun. 2012;17 Suppl 3:294-302. doi: 10.1080/10810730.2012.712624.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验