Suppr超能文献

脸书和推特上针对麻疹疫情的疫苗情绪

Facebook and Twitter vaccine sentiment in response to measles outbreaks.

机构信息

University of California, San Francisco, USA.

Vanderbilt University, USA.

出版信息

Health Informatics J. 2019 Sep;25(3):1116-1132. doi: 10.1177/1460458217740723. Epub 2017 Nov 17.

Abstract

Social media posts regarding measles vaccination were classified as pro-vaccination, expressing vaccine hesitancy, uncertain, or irrelevant. Spearman correlations with Centers for Disease Control and Prevention-reported measles cases and differenced smoothed cumulative case counts over this period were reported (using time series bootstrap confidence intervals). A total of 58,078 Facebook posts and 82,993 tweets were identified from 4 January 2009 to 27 August 2016. Pro-vaccination posts were correlated with the US weekly reported cases (Facebook: Spearman correlation 0.22 (95% confidence interval: 0.09 to 0.34), Twitter: 0.21 (95% confidence interval: 0.06 to 0.34)). Vaccine-hesitant posts, however, were uncorrelated with measles cases in the United States (Facebook: 0.01 (95% confidence interval: -0.13 to 0.14), Twitter: 0.0011 (95% confidence interval: -0.12 to 0.12)). These findings may result from more consistent social media engagement by individuals expressing vaccine hesitancy, contrasted with media- or event-driven episodic interest on the part of individuals favoring current policy.

摘要

社交媒体上关于麻疹疫苗接种的帖子被分为赞成疫苗接种、表达疫苗犹豫、不确定或不相关的帖子。报告了与疾病控制和预防中心报告的麻疹病例的 Spearman 相关性,并报告了在此期间差异平滑累积病例数(使用时间序列引导置信区间)。从 2009 年 1 月 4 日至 2016 年 8 月 27 日,共确定了 58078 条 Facebook 帖子和 82993 条推文。赞成疫苗接种的帖子与美国每周报告的病例相关(Facebook:Spearman 相关系数为 0.22(95%置信区间:0.09 至 0.34),Twitter:0.21(95%置信区间:0.06 至 0.34))。然而,对疫苗持犹豫态度的帖子与美国的麻疹病例无关(Facebook:0.01(95%置信区间:-0.13 至 0.14),Twitter:0.0011(95%置信区间:-0.12 至 0.12))。这些发现可能是由于对疫苗持犹豫态度的个人更一致地参与社交媒体,而不是赞成当前政策的个人出于媒体或事件驱动的突发兴趣。

相似文献

1
Facebook and Twitter vaccine sentiment in response to measles outbreaks.
Health Informatics J. 2019 Sep;25(3):1116-1132. doi: 10.1177/1460458217740723. Epub 2017 Nov 17.
2
Examining the Prevailing Negative Sentiments Surrounding Measles Vaccination: Unsupervised Deep Learning of Twitter Posts from 2017 to 2022.
Cyberpsychol Behav Soc Netw. 2023 Aug;26(8):621-630. doi: 10.1089/cyber.2023.0025. Epub 2023 Jun 26.
3
Semantic network analysis of vaccine sentiment in online social media.
Vaccine. 2017 Jun 22;35(29):3621-3638. doi: 10.1016/j.vaccine.2017.05.052. Epub 2017 May 27.
5
Temporal trends in anti-vaccine discourse on Twitter.
Vaccine. 2019 Aug 14;37(35):4867-4871. doi: 10.1016/j.vaccine.2019.06.086. Epub 2019 Jul 9.
6
The web and public confidence in MMR vaccination in Italy.
Vaccine. 2017 Aug 16;35(35 Pt B):4494-4498. doi: 10.1016/j.vaccine.2017.07.029. Epub 2017 Jul 20.
7
Effective vaccine communication during the disneyland measles outbreak.
Vaccine. 2016 Jun 14;34(28):3225-8. doi: 10.1016/j.vaccine.2016.04.044. Epub 2016 May 11.
10
Facebook Pages, the "Disneyland" Measles Outbreak, and Promotion of Vaccine Refusal as a Civil Right, 2009-2019.
Am J Public Health. 2020 Oct;110(S3):S312-S318. doi: 10.2105/AJPH.2020.305869.

引用本文的文献

3
Dynamics of communication on measles vaccination on digital platforms in the Brazilian context: challenges and perspectives.
Rev Inst Med Trop Sao Paulo. 2024 Dec 6;66:e68. doi: 10.1590/S1678-9946202466068. eCollection 2024.
4
Mapping the Mpox discourse: A network and sentiment analysis.
Explor Res Clin Soc Pharm. 2024 Oct 9;16:100521. doi: 10.1016/j.rcsop.2024.100521. eCollection 2024 Dec.
7
12-year observation of tweets about rubella in Japan: A retrospective infodemiology study.
PLoS One. 2023 May 8;18(5):e0285101. doi: 10.1371/journal.pone.0285101. eCollection 2023.
8
Media Data and Vaccine Hesitancy: Scoping Review.
JMIR Infodemiology. 2022 Aug 10;2(2):e37300. doi: 10.2196/37300. eCollection 2022 Jul-Dec.
9
Examining Vaccine Sentiment on Twitter and Local Vaccine Deployment during the COVID-19 Pandemic.
Int J Environ Res Public Health. 2022 Dec 26;20(1):354. doi: 10.3390/ijerph20010354.
10
A comparative analysis of anti-vax discourse on twitter before and after COVID-19 onset.
Health Informatics J. 2022 Oct-Dec;28(4):14604582221135831. doi: 10.1177/14604582221135831.

本文引用的文献

2
Vaccine Hesitancy: Where We Are and Where We Are Going.
Clin Ther. 2017 Aug;39(8):1550-1562. doi: 10.1016/j.clinthera.2017.07.003. Epub 2017 Jul 31.
4
What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, and Prevention.
JMIR Public Health Surveill. 2017 Jun 19;3(2):e38. doi: 10.2196/publichealth.7157.
5
Too Far to Care? Measuring Public Attention and Fear for Ebola Using Twitter.
J Med Internet Res. 2017 Jun 13;19(6):e193. doi: 10.2196/jmir.7219.
6
Semantic network analysis of vaccine sentiment in online social media.
Vaccine. 2017 Jun 22;35(29):3621-3638. doi: 10.1016/j.vaccine.2017.05.052. Epub 2017 May 27.
7
Mapping information exposure on social media to explain differences in HPV vaccine coverage in the United States.
Vaccine. 2017 May 25;35(23):3033-3040. doi: 10.1016/j.vaccine.2017.04.060. Epub 2017 Apr 29.
8
Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets.
J Biomed Semantics. 2017 Mar 3;8(1):9. doi: 10.1186/s13326-017-0120-6.
9
Notes from the Field: Use of Social Media as a Communication Tool During a Mumps Outbreak - New York City, 2015.
MMWR Morb Mortal Wkly Rep. 2017 Jan 20;66(2):60-61. doi: 10.15585/mmwr.mm6602a5.
10
Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data.
PLoS Negl Trop Dis. 2017 Jan 13;11(1):e0005295. doi: 10.1371/journal.pntd.0005295. eCollection 2017 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验