Suppr超能文献

三维环境维持星形胶质细胞发育过程中的形态异质性并促进表型进展。

Three-Dimensional Environment Sustains Morphological Heterogeneity and Promotes Phenotypic Progression During Astrocyte Development.

作者信息

Balasubramanian Swarnalatha, Packard John A, Leach Jennie B, Powell Elizabeth M

机构信息

1 Department of Chemical, Biochemical and Environmental Engineering, UMBC , Baltimore, Maryland.

2 Departments of Anatomy and Neurobiology, Psychiatry, and Bioengineering, University of Maryland School of Medicine , Baltimore, Maryland.

出版信息

Tissue Eng Part A. 2016 Jun;22(11-12):885-98. doi: 10.1089/ten.TEA.2016.0103.

Abstract

Astrocytes are critical for coordinating normal brain function by regulating brain metabolic homeostasis, synaptogenesis and neurotransmission, and blood-brain barrier permeability and maintenance. Dysregulation of normal astrocyte ontogeny contributes to neurodevelopmental and neurodegenerative disorders, epilepsies, and adverse responses to injury. To achieve these multiple essential roles, astrocyte phenotypes are regionally, morphologically, and functionally heterogeneous. Therefore, the best regenerative medicine strategies may require selective production of distinct astrocyte subpopulations at defined maturation levels. However, little is known about the mechanisms that direct astrocyte diversity or whether heterogeneity is represented in biomaterials. In vitro studies report lack of normal morphologies and overrepresentation of the glial scar type of reactive astrocyte morphology and expression of markers, questioning how well the in vitro astrocytes represent glia in vivo and whether in vitro tissue engineering methods are suitable for regenerative medicine applications. Our previous work with neurons suggests that the three-dimensional (3D) environment, when compared with standard two-dimensional (2D) substrate, yields cellular and molecular behaviors that more closely approximately normal ontogeny. To specifically study the effects of dimensionality, we used purified glial fibrillary acidic protein (GFAP)-expressing primary cerebral cortical astrocyte cultures from single pups and characterized the cellular maturation profiles in 2D and 3D milieu. We identified four morphological groups in vitro: round, bipolar, stellate, and putative perivascular. In the 3D hydrogel culture environment, postnatal astrocytes transitioned from a population of nearly all round cells and very few bipolar cells toward a population with significant fractions of round, stellate, and putative perivascular cells within a few days, following the in vivo ontogeny. In 2D, however, the population shift from round and bipolar to stellate and perivascular was rarely observed. The transition to distinct cellular morphologies in 3D corresponded to the in vivo expression of phenotypic markers, supporting the generation of mature heterogeneous glial populations in vitro. This study presents quantitative data supporting that 3D culture is critical for sustaining the heterogeneity of astrocytes in vitro and for generating a representation of the in vivo portfolio of heterogeneous populations of astrocytes required for therapeutic interventions in neurodevelopmental disorders, epilepsy, and brain injury.

摘要

星形胶质细胞对于协调正常脑功能至关重要,其通过调节脑代谢稳态、突触发生和神经传递以及血脑屏障的通透性和维持来实现这一功能。正常星形胶质细胞个体发育的失调会导致神经发育和神经退行性疾病、癫痫以及对损伤的不良反应。为了发挥这些多种重要作用,星形胶质细胞的表型在区域、形态和功能上具有异质性。因此,最佳的再生医学策略可能需要在特定的成熟水平上选择性地产生不同的星形胶质细胞亚群。然而,对于指导星形胶质细胞多样性的机制以及异质性是否在生物材料中得以体现,我们却知之甚少。体外研究报告指出,体外星形胶质细胞缺乏正常形态,且反应性星形胶质细胞形态的胶质瘢痕类型以及标志物的表达过多,这让人质疑体外星形胶质细胞在多大程度上能代表体内的胶质细胞,以及体外组织工程方法是否适用于再生医学应用。我们之前对神经元的研究表明,与标准的二维(2D)基质相比,三维(3D)环境能产生更接近正常个体发育的细胞和分子行为。为了具体研究维度的影响,我们使用了来自单个幼崽的纯化的表达胶质纤维酸性蛋白(GFAP)的原代大脑皮质星形胶质细胞培养物,并对其在二维和三维环境中的细胞成熟情况进行了表征。我们在体外鉴定出了四种形态学组:圆形、双极形、星形和假定的血管周围形。在三维水凝胶培养环境中,出生后的星形胶质细胞在几天内从几乎全是圆形细胞且很少有双极形细胞的群体转变为具有相当比例的圆形、星形和假定的血管周围形细胞的群体,这与体内个体发育情况相符。然而,在二维环境中,从圆形和双极形向星形和血管周围形的群体转变很少被观察到。在三维环境中向不同细胞形态的转变与表型标志物的体内表达相对应,这支持了体外成熟异质胶质群体的生成。这项研究提供了定量数据,支持三维培养对于在体外维持星形胶质细胞的异质性以及生成神经发育障碍、癫痫和脑损伤治疗干预所需的体内异质星形胶质细胞群体组合的代表性至关重要。

相似文献

2
A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo.
Mol Med Rep. 2015 Aug;12(2):2598-606. doi: 10.3892/mmr.2015.3702. Epub 2015 Apr 29.
4
In vitro induction of in vivo-relevant stellate astrocytes in 3D brain-derived, decellularized extracellular matrices.
Acta Biomater. 2023 Dec;172:218-233. doi: 10.1016/j.actbio.2023.09.046. Epub 2023 Oct 1.
6
7
Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix.
Biomaterials. 2015 Feb;42:134-43. doi: 10.1016/j.biomaterials.2014.11.046. Epub 2014 Dec 16.

引用本文的文献

2
Simple design for membrane-free microphysiological systems to model the blood-tissue barriers.
Organs Chip. 2023 Dec;5. doi: 10.1016/j.ooc.2023.100032. Epub 2023 Dec 6.
3
Impact of perfusion on neuronal development in human derived neuronal networks.
APL Bioeng. 2024 Oct 1;8(4):046102. doi: 10.1063/5.0221911. eCollection 2024 Dec.
4
An Overview of Multiple Sclerosis In Vitro Models.
Int J Mol Sci. 2024 Jul 16;25(14):7759. doi: 10.3390/ijms25147759.
5
Mechanobiological Modulation of Astrocyte Reactivity Using Variable Gel Stiffness.
ACS Biomater Sci Eng. 2024 Jul 8;10(7):4279-4296. doi: 10.1021/acsbiomaterials.4c00229. Epub 2024 Jun 13.
6
Effects of amyloid-β-mimicking peptide hydrogel matrix on neuronal progenitor cell phenotype.
Acta Biomater. 2024 Jul 15;183:89-100. doi: 10.1016/j.actbio.2024.05.020. Epub 2024 May 25.
7
Simple Design for Membrane-Free Microphysiological Systems to Model the Blood-Tissue Barriers.
bioRxiv. 2023 Oct 23:2023.10.20.563328. doi: 10.1101/2023.10.20.563328.
8
Emergent structural and functional properties of hippocampal multi-cellular aggregates.
Front Neurosci. 2023 Jun 15;17:1171115. doi: 10.3389/fnins.2023.1171115. eCollection 2023.
9
A 3D human co-culture to model neuron-astrocyte interactions in tauopathies.
Biol Proced Online. 2023 Feb 23;25(1):4. doi: 10.1186/s12575-023-00194-2.
10
The application of collagen in the repair of peripheral nerve defect.
Front Bioeng Biotechnol. 2022 Sep 23;10:973301. doi: 10.3389/fbioe.2022.973301. eCollection 2022.

本文引用的文献

1
Local production of astrocytes in the cerebral cortex.
Neuroscience. 2016 May 26;323:3-9. doi: 10.1016/j.neuroscience.2015.08.057. Epub 2015 Sep 4.
2
Astrocytes: New Targets for the Treatment of Neurodegenerative Diseases.
Curr Pharm Des. 2015;21(25):3570-81. doi: 10.2174/1381612821666150710144502.
3
Diversity of astrocyte functions and phenotypes in neural circuits.
Nat Neurosci. 2015 Jul;18(7):942-52. doi: 10.1038/nn.4043.
4
Potential primary roles of glial cells in the mechanisms of psychiatric disorders.
Front Cell Neurosci. 2015 May 15;9:154. doi: 10.3389/fncel.2015.00154. eCollection 2015.
6
Astrocyte development: A Guide for the Perplexed.
Glia. 2015 Aug;63(8):1320-9. doi: 10.1002/glia.22836. Epub 2015 May 12.
7
Elevated GFAP Protein in Anterior Cingulate Cortical White Matter in Males With Autism Spectrum Disorder.
Autism Res. 2015 Dec;8(6):649-57. doi: 10.1002/aur.1480. Epub 2015 Apr 6.
8
Astrocyte uncoupling as a cause of human temporal lobe epilepsy.
Brain. 2015 May;138(Pt 5):1208-22. doi: 10.1093/brain/awv067. Epub 2015 Mar 12.
10
Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix.
Biomaterials. 2015 Feb;42:134-43. doi: 10.1016/j.biomaterials.2014.11.046. Epub 2014 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验