Suppr超能文献

基于受激拉曼成像的无标记神经外科病理学

Label-Free Neurosurgical Pathology with Stimulated Raman Imaging.

作者信息

Lu Fa-Ke, Calligaris David, Olubiyi Olutayo I, Norton Isaiah, Yang Wenlong, Santagata Sandro, Xie X Sunney, Golby Alexandra J, Agar Nathalie Y R

机构信息

Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.

Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

Cancer Res. 2016 Jun 15;76(12):3451-62. doi: 10.1158/0008-5472.CAN-16-0270. Epub 2016 Apr 12.

Abstract

The goal of brain tumor surgery is to maximize tumor removal without injuring critical brain structures. Achieving this goal is challenging as it can be difficult to distinguish tumor from nontumor tissue. While standard histopathology provides information that could assist tumor delineation, it cannot be performed iteratively during surgery as freezing, sectioning, and staining of the tissue require too much time. Stimulated Raman scattering (SRS) microscopy is a powerful label-free chemical imaging technology that enables rapid mapping of lipids and proteins within a fresh specimen. This information can be rendered into pathology-like images. Although this approach has been used to assess the density of glioma cells in murine orthotopic xenografts models and human brain tumors, tissue heterogeneity in clinical brain tumors has not yet been fully evaluated with SRS imaging. Here we profile 41 specimens resected from 12 patients with a range of brain tumors. By evaluating large-scale stimulated Raman imaging data and correlating this data with current clinical gold standard of histopathology for 4,422 fields of view, we capture many essential diagnostic hallmarks for glioma classification. Notably, in fresh tumor samples, we observe additional features, not seen by conventional methods, including extensive lipid droplets within glioma cells, collagen deposition in gliosarcoma, and irregularity and disruption of myelinated fibers in areas infiltrated by oligodendroglioma cells. The data are freely available in a public resource to foster diagnostic training and to permit additional interrogation. Our work establishes the methodology and provides a significant collection of reference images for label-free neurosurgical pathology. Cancer Res; 76(12); 3451-62. ©2016 AACR.

摘要

脑肿瘤手术的目标是在不损伤关键脑结构的情况下最大限度地切除肿瘤。实现这一目标具有挑战性,因为很难区分肿瘤组织和非肿瘤组织。虽然标准组织病理学可提供有助于肿瘤轮廓勾勒的信息,但由于组织冷冻、切片和染色耗时过长,无法在手术过程中反复进行。受激拉曼散射(SRS)显微镜检查是一种强大的无标记化学成像技术,能够对新鲜标本中的脂质和蛋白质进行快速成像。这些信息可转化为类似病理的图像。尽管这种方法已用于评估小鼠原位异种移植模型和人脑肿瘤中胶质瘤细胞的密度,但SRS成像尚未对临床脑肿瘤中的组织异质性进行全面评估。在此,我们剖析了从12例患有一系列脑肿瘤的患者身上切除的41个标本。通过评估大规模受激拉曼成像数据,并将这些数据与4422个视野的组织病理学当前临床金标准相关联,我们获取了许多用于胶质瘤分类的重要诊断特征。值得注意的是,在新鲜肿瘤样本中,我们观察到了传统方法未发现的其他特征,包括胶质瘤细胞内广泛的脂滴、胶质肉瘤中的胶原沉积以及少突胶质细胞瘤细胞浸润区域中髓鞘纤维的不规则性和破坏。这些数据可在公共资源中免费获取,以促进诊断培训并允许进一步研究。我们的工作建立了该方法,并为无标记神经外科病理学提供了大量参考图像集。《癌症研究》;76(12);3451 - 62。©2016美国癌症研究协会。

相似文献

1
Label-Free Neurosurgical Pathology with Stimulated Raman Imaging.
Cancer Res. 2016 Jun 15;76(12):3451-62. doi: 10.1158/0008-5472.CAN-16-0270. Epub 2016 Apr 12.
2
Surface-Enhanced Resonance Raman Scattering-Guided Brain Tumor Surgery Showing Prognostic Benefit in Rat Models.
ACS Appl Mater Interfaces. 2019 May 1;11(17):15241-15250. doi: 10.1021/acsami.9b00227. Epub 2019 Apr 17.
3
Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.
Sci Transl Med. 2015 Oct 14;7(309):309ra163. doi: 10.1126/scitranslmed.aab0195.
4
Label-free brain tumor imaging using Raman-based methods.
J Neurooncol. 2021 Feb;151(3):393-402. doi: 10.1007/s11060-019-03380-z. Epub 2021 Feb 21.
5
Improving the accuracy of brain tumor surgery via Raman-based technology.
Neurosurg Focus. 2016 Mar;40(3):E9. doi: 10.3171/2015.12.FOCUS15557.
7
Advancements in Neurosurgical Intraoperative Histology.
Tomography. 2024 May 9;10(5):693-704. doi: 10.3390/tomography10050054.
8
Rapid Intraoperative Diagnosis of Pediatric Brain Tumors Using Stimulated Raman Histology.
Cancer Res. 2018 Jan 1;78(1):278-289. doi: 10.1158/0008-5472.CAN-17-1974. Epub 2017 Nov 1.
9
Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy.
Sci Transl Med. 2013 Sep 4;5(201):201ra119. doi: 10.1126/scitranslmed.3005954.

引用本文的文献

1
Construction of a whole-brain panorama for glioma vasculature reveals tumor heterogeneity and blood-brain barrier disruption.
Sci Adv. 2025 Jul 25;11(30):eadw8330. doi: 10.1126/sciadv.adw8330. Epub 2025 Jul 23.
4
Anisotropic hydrogel microelectrodes for intraspinal neural recordings in vivo.
Nat Commun. 2025 Jan 28;16(1):1127. doi: 10.1038/s41467-025-56450-4.
5
Artificial Intelligence-Assisted Stimulated Raman Histology: New Frontiers in Vibrational Tissue Imaging.
Cancers (Basel). 2024 Nov 22;16(23):3917. doi: 10.3390/cancers16233917.
6
Seeing is Believing: Developing Multimodal Metabolic Insights at the Molecular Level.
ACS Cent Sci. 2024 Mar 21;10(4):758-774. doi: 10.1021/acscentsci.3c01438. eCollection 2024 Apr 24.
7
Label-free optical imaging for brain cancer assessment.
Trends Cancer. 2024 Jun;10(6):557-570. doi: 10.1016/j.trecan.2024.03.005. Epub 2024 Apr 4.
8
Noninvasive Nonlinear Optical Computational Histology.
Adv Sci (Weinh). 2024 Mar;11(9):e2308630. doi: 10.1002/advs.202308630. Epub 2023 Dec 14.
10
Accelerating Cancer Histopathology Workflows with Chemical Imaging and Machine Learning.
Cancer Res Commun. 2023 Sep 18;3(9):1875-1887. doi: 10.1158/2767-9764.CRC-23-0226.

本文引用的文献

1
Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine.
Science. 2015 Nov 27;350(6264):aaa8870. doi: 10.1126/science.aaa8870.
2
Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.
Sci Transl Med. 2015 Oct 14;7(309):309ra163. doi: 10.1126/scitranslmed.aab0195.
3
How neuronal activity regulates glioma cell proliferation.
Neuro Oncol. 2015 Dec;17(12):1543-4. doi: 10.1093/neuonc/nov188. Epub 2015 Sep 10.
4
Label-free DNA imaging in vivo with stimulated Raman scattering microscopy.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11624-9. doi: 10.1073/pnas.1515121112. Epub 2015 Aug 31.
5
Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography.
Sci Transl Med. 2015 Jun 17;7(292):292ra100. doi: 10.1126/scitranslmed.3010611.
6
Glioblastoma: pathology, molecular mechanisms and markers.
Acta Neuropathol. 2015 Jun;129(6):829-48. doi: 10.1007/s00401-015-1432-1. Epub 2015 May 6.
7
Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion.
Cell. 2015 May 7;161(4):803-16. doi: 10.1016/j.cell.2015.04.012. Epub 2015 Apr 23.
8
SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.
Nature. 2015 Apr 16;520(7547):363-7. doi: 10.1038/nature14363. Epub 2015 Apr 8.
9
Intraoperative brain cancer detection with Raman spectroscopy in humans.
Sci Transl Med. 2015 Feb 11;7(274):274ra19. doi: 10.1126/scitranslmed.aaa2384.
10
High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues.
Nat Photonics. 2014;8:627-634. doi: 10.1038/nphoton.2014.145.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验