Suppr超能文献

原核生物基因组的进化组装模式。

Evolutionary assembly patterns of prokaryotic genomes.

作者信息

Press Maximilian O, Queitsch Christine, Borenstein Elhanan

机构信息

Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA;

Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA; Santa Fe Institute, Santa Fe, New Mexico 87501, USA.

出版信息

Genome Res. 2016 Jun;26(6):826-33. doi: 10.1101/gr.200097.115. Epub 2016 Apr 14.

Abstract

Evolutionary innovation must occur in the context of some genomic background, which limits available evolutionary paths. For example, protein evolution by sequence substitution is constrained by epistasis between residues. In prokaryotes, evolutionary innovation frequently happens by macrogenomic events such as horizontal gene transfer (HGT). Previous work has suggested that HGT can be influenced by ancestral genomic content, yet the extent of such gene-level constraints has not yet been systematically characterized. Here, we evaluated the evolutionary impact of such constraints in prokaryotes, using probabilistic ancestral reconstructions from 634 extant prokaryotic genomes and a novel framework for detecting evolutionary constraints on HGT events. We identified 8228 directional dependencies between genes and demonstrated that many such dependencies reflect known functional relationships, including for example, evolutionary dependencies of the photosynthetic enzyme RuBisCO. Modeling all dependencies as a network, we adapted an approach from graph theory to establish chronological precedence in the acquisition of different genomic functions. Specifically, we demonstrated that specific functions tend to be gained sequentially, suggesting that evolution in prokaryotes is governed by functional assembly patterns. Finally, we showed that these dependencies are universal rather than clade-specific and are often sufficient for predicting whether or not a given ancestral genome will acquire specific genes. Combined, our results indicate that evolutionary innovation via HGT is profoundly constrained by epistasis and historical contingency, similar to the evolution of proteins and phenotypic characters, and suggest that the emergence of specific metabolic and pathological phenotypes in prokaryotes can be predictable from current genomes.

摘要

进化创新必须在某些基因组背景的情况下发生,这限制了可用的进化路径。例如,通过序列替换进行的蛋白质进化受到残基之间上位性的限制。在原核生物中,进化创新经常通过诸如水平基因转移(HGT)等宏基因组事件发生。先前的研究表明,HGT可能受到祖先基因组内容的影响,然而这种基因水平限制的程度尚未得到系统的表征。在这里,我们利用来自634个现存原核生物基因组的概率性祖先重建以及一种用于检测对HGT事件的进化限制的新框架,评估了这种限制在原核生物中的进化影响。我们确定了基因之间的8228个定向依赖性,并证明许多这样的依赖性反映了已知的功能关系,例如光合酶RuBisCO的进化依赖性。将所有依赖性建模为一个网络,我们采用了图论中的一种方法来确定不同基因组功能获得的时间先后顺序。具体来说,我们证明特定功能倾向于依次获得,这表明原核生物中的进化受功能组装模式的支配。最后,我们表明这些依赖性是普遍的而非特定于进化枝的,并且通常足以预测给定的祖先基因组是否会获得特定基因。综合起来,我们的结果表明,与蛋白质和表型特征的进化类似,通过HGT进行的进化创新受到上位性和历史偶然性的深刻限制,并表明原核生物中特定代谢和病理表型的出现可以从当前基因组中预测出来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a902/4889971/958386737292/826f01.jpg

相似文献

1
Evolutionary assembly patterns of prokaryotic genomes.
Genome Res. 2016 Jun;26(6):826-33. doi: 10.1101/gr.200097.115. Epub 2016 Apr 14.
4
Does a tree-like phylogeny only exist at the tips in the prokaryotes?
Proc Biol Sci. 2004 Dec 22;271(1557):2551-8. doi: 10.1098/rspb.2004.2864.
5
Involvement of β-Carbonic Anhydrase Genes in Bacterial Genomic Islands and Their Horizontal Transfer to Protists.
Appl Environ Microbiol. 2018 Jul 17;84(15). doi: 10.1128/AEM.00771-18. Print 2018 Aug 1.
6
The net of life: reconstructing the microbial phylogenetic network.
Genome Res. 2005 Jul;15(7):954-9. doi: 10.1101/gr.3666505. Epub 2005 Jun 17.
8
Horizontal gene transfer drives the evolution of Rh50 permeases in prokaryotes.
BMC Evol Biol. 2017 Jan 3;17(1):2. doi: 10.1186/s12862-016-0850-6.
9
Horizontal gene transfer and adaptive evolution in bacteria.
Nat Rev Microbiol. 2022 Apr;20(4):206-218. doi: 10.1038/s41579-021-00650-4. Epub 2021 Nov 12.

引用本文的文献

1
Machine learning enables prediction of metabolic system evolution in bacteria.
Sci Adv. 2023 Jan 13;9(2):eadc9130. doi: 10.1126/sciadv.adc9130. Epub 2023 Jan 11.
2
Horizontal gene transfer drives the evolution of dependencies in bacteria.
iScience. 2022 Apr 27;25(5):104312. doi: 10.1016/j.isci.2022.104312. eCollection 2022 May 20.
3
Functions predict horizontal gene transfer and the emergence of antibiotic resistance.
Sci Adv. 2021 Oct 22;7(43):eabj5056. doi: 10.1126/sciadv.abj5056.
4
Evidence for Selection in the Abundant Accessory Gene Content of a Prokaryote Pangenome.
Mol Biol Evol. 2021 Aug 23;38(9):3697-3708. doi: 10.1093/molbev/msab139.
5
Ancestral state reconstruction of metabolic pathways across pangenome ensembles.
Microb Genom. 2020 Nov;6(11). doi: 10.1099/mgen.0.000429.
6
Horizontal Gene Transfer as a Source of Conflict and Cooperation in Prokaryotes.
Front Microbiol. 2020 Jul 17;11:1569. doi: 10.3389/fmicb.2020.01569. eCollection 2020.
7
Substitutions Are Boring: Some Arguments about Parallel Mutations and High Mutation Rates.
Trends Genet. 2019 Apr;35(4):253-264. doi: 10.1016/j.tig.2019.01.002. Epub 2019 Feb 20.
9
Evolution of complex adaptations in molecular systems.
Nat Ecol Evol. 2017 Aug;1(8):1084-1092. doi: 10.1038/s41559-017-0228-1. Epub 2017 Jul 21.
10
The landscape of microbial phenotypic traits and associated genes.
Nucleic Acids Res. 2016 Dec 1;44(21):10074-10090. doi: 10.1093/nar/gkw964. Epub 2016 Oct 24.

本文引用的文献

2
HGTree: database of horizontally transferred genes determined by tree reconciliation.
Nucleic Acids Res. 2016 Jan 4;44(D1):D610-9. doi: 10.1093/nar/gkv1245. Epub 2015 Nov 17.
3
Horizontal gene transfer: building the web of life.
Nat Rev Genet. 2015 Aug;16(8):472-82. doi: 10.1038/nrg3962.
4
Repeated evolution and the impact of evolutionary history on adaptation.
BMC Evol Biol. 2015 Jul 10;15:137. doi: 10.1186/s12862-015-0424-z.
5
Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms.
Mol Biol Evol. 2015 Apr;32(4):846-58. doi: 10.1093/molbev/msu410. Epub 2015 Jan 12.
6
Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes.
BMC Biol. 2014 Aug 21;12:66. doi: 10.1186/s12915-014-0066-4.
7
Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis.
Mol Microbiol. 2014 Sep;93(6):1284-301. doi: 10.1111/mmi.12736. Epub 2014 Aug 15.
8
Historical contingency and its biophysical basis in glucocorticoid receptor evolution.
Nature. 2014 Aug 14;512(7513):203-7. doi: 10.1038/nature13410. Epub 2014 Jun 15.
9
The extent of genome flux and its role in the differentiation of bacterial lineages.
Genome Biol Evol. 2014 Jun 12;6(6):1514-29. doi: 10.1093/gbe/evu123.
10
Empirical fitness landscapes and the predictability of evolution.
Nat Rev Genet. 2014 Jul;15(7):480-90. doi: 10.1038/nrg3744. Epub 2014 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验