Suppr超能文献

神经解码与“内在”心理物理学:一种连接心智、大脑和行为的接近边界的方法。

Neural Decoding and "Inner" Psychophysics: A Distance-to-Bound Approach for Linking Mind, Brain, and Behavior.

作者信息

Ritchie J Brendan, Carlson Thomas A

机构信息

Laboratory of Biological Psychology, Brain and Cognition Unit, KU LeuvenLeuven, Belgium; Department of Philosophy, University of MarylandCollege Park, MD, USA.

Perception in Action Research Centre, Department of Cognitive Science, Macquarie UniversitySydney, NSW, Australia; ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, NSW, Australia.

出版信息

Front Neurosci. 2016 Apr 28;10:190. doi: 10.3389/fnins.2016.00190. eCollection 2016.

Abstract

A fundamental challenge for cognitive neuroscience is characterizing how the primitives of psychological theory are neurally implemented. Attempts to meet this challenge are a manifestation of what Fechner called "inner" psychophysics: the theory of the precise mapping between mental quantities and the brain. In his own time, inner psychophysics remained an unrealized ambition for Fechner. We suggest that, today, multivariate pattern analysis (MVPA), or neural "decoding," methods provide a promising starting point for developing an inner psychophysics. A cornerstone of these methods are simple linear classifiers applied to neural activity in high-dimensional activation spaces. We describe an approach to inner psychophysics based on the shared architecture of linear classifiers and observers under decision boundary models such as signal detection theory. Under this approach, distance from a decision boundary through activation space, as estimated by linear classifiers, can be used to predict reaction time in accordance with signal detection theory, and distance-to-bound models of reaction time. Our "neural distance-to-bound" approach is potentially quite general, and simple to implement. Furthermore, our recent work on visual object recognition suggests it is empirically viable. We believe the approach constitutes an important step along the path to an inner psychophysics that links mind, brain, and behavior.

摘要

认知神经科学面临的一个基本挑战是描述心理理论的基本要素是如何在神经层面上得以实现的。应对这一挑战的种种尝试体现了费希纳所称的“内部”心理物理学:即关于心理量与大脑之间精确映射的理论。在费希纳所处的时代,内部心理物理学对他来说仍是一个未实现的抱负。我们认为,如今多变量模式分析(MVPA)或神经“解码”方法为发展内部心理物理学提供了一个有前景的起点。这些方法的一个基石是应用于高维激活空间中神经活动的简单线性分类器。我们描述了一种基于线性分类器与诸如信号检测理论等决策边界模型下的观察者的共享架构的内部心理物理学方法。在这种方法中,由线性分类器估计的通过激活空间到决策边界的距离,可根据信号检测理论以及反应时的距离至边界模型来预测反应时。我们的“神经距离至边界”方法可能具有相当的普遍性,且易于实施。此外,我们最近关于视觉物体识别的研究表明它在实证上是可行的。我们相信该方法是通向连接心智、大脑和行为的内部心理物理学道路上的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14a/4848306/a8eb6fd52bb6/fnins-10-00190-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验