Wimmers Ferreira Maidy Rehder, Rodrigo Fernandes Roger, Freire Assis Amanda, Dernowsek Janaína A, Passos Geraldo A, Variola Fabio, Fittipaldi Bombonato-Prado Karina
Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil.
Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil.
Int J Biomater. 2016;2016:9169371. doi: 10.1155/2016/9169371. Epub 2016 Apr 21.
Titanium implants have been extensively used in orthopedic and dental applications. It is well known that micro- and nanoscale surface features of biomaterials affect cellular events that control implant-host tissue interactions. To improve our understanding of how multiscale surface features affect cell behavior, we used microarrays to evaluate the transcriptional profile of osteoblastic cells from human alveolar bone cultured on engineered titanium surfaces, exhibiting the following topographies: nanotexture (N), nano+submicrotexture (NS), and rough microtexture (MR), obtained by modulating experimental parameters (temperature and solution composition) of a simple yet efficient chemical treatment with a H2SO4/H2O2 solution. Biochemical assays showed that cell culture proliferation augmented after 10 days, and cell viability increased gradually over 14 days. Among the treated surfaces, we observed an increase of alkaline phosphatase activity as a function of the surface texture, with higher activity shown by cells adhering onto nanotextured surfaces. Nevertheless, the rough microtexture group showed higher amounts of calcium than nanotextured group. Microarray data showed differential expression of 716 mRNAs and 32 microRNAs with functions associated with osteogenesis. Results suggest that oxidative nanopatterning of titanium surfaces induces changes in the metabolism of osteoblastic cells and contribute to the explanation of the mechanisms that control cell responses to micro- and nanoengineered surfaces.
钛植入物已广泛应用于骨科和牙科领域。众所周知,生物材料的微米和纳米级表面特征会影响控制植入物与宿主组织相互作用的细胞活动。为了更好地理解多尺度表面特征如何影响细胞行为,我们使用微阵列来评估在工程化钛表面培养的人牙槽骨成骨细胞的转录谱,这些表面呈现出以下形貌:纳米纹理(N)、纳米+亚微米纹理(NS)和粗糙微纹理(MR),这些形貌是通过调节用硫酸/过氧化氢溶液进行的简单而有效的化学处理的实验参数(温度和溶液成分)获得的。生化分析表明,细胞培养10天后增殖增加,细胞活力在14天内逐渐增加。在处理过的表面中,我们观察到碱性磷酸酶活性随表面纹理的变化而增加,附着在纳米纹理表面的细胞显示出更高的活性。然而,粗糙微纹理组的钙含量高于纳米纹理组。微阵列数据显示716种mRNA和32种microRNA的差异表达,其功能与骨生成相关。结果表明,钛表面的氧化纳米图案化诱导了成骨细胞代谢的变化,并有助于解释控制细胞对微米和纳米工程表面反应的机制。