Suppr超能文献

基因组DNA甲基化分析揭示了具有持久胚乳的蓖麻种子中的独特图谱。

Genomic DNA Methylation Analyses Reveal the Distinct Profiles in Castor Bean Seeds with Persistent Endosperms.

作者信息

Xu Wei, Yang Tianquan, Dong Xue, Li De-Zhu, Liu Aizhong

机构信息

Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.).

Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)

出版信息

Plant Physiol. 2016 Jun;171(2):1242-58. doi: 10.1104/pp.16.00056. Epub 2016 Apr 28.

Abstract

Investigations of genomic DNA methylation in seeds have been restricted to a few model plants. The endosperm genomic DNA hypomethylation has been identified in angiosperm, but it is difficult to dissect the mechanism of how this hypomethylation is established and maintained because endosperm is ephemeral and disappears with seed development in most dicots. Castor bean (Ricinus communis), unlike Arabidopsis (Arabidopsis thaliana), endosperm is persistent throughout seed development, providing an excellent model in which to dissect the mechanism of endosperm genomic hypomethylation in dicots. We characterized the DNA methylation-related genes encoding DNA methyltransferases and demethylases and analyzed their expression profiles in different tissues. We examined genomic methylation including CG, CHG, and CHH contexts in endosperm and embryo tissues using bisulfite sequencing and revealed that the CHH methylation extent in endosperm and embryo was, unexpectedly, substantially higher than in previously studied plants, irrespective of the CHH percentage in their genomes. In particular, we found that the endosperm exhibited a global reduction in CG and CHG methylation extents relative to the embryo, markedly switching global gene expression. However, CHH methylation occurring in endosperm did not exhibit a significant reduction. Combining with the expression of 24-nucleotide small interfering RNAs (siRNAs) mapped within transposable element (TE) regions and genes involved in the RNA-directed DNA methylation pathway, we demonstrate that the 24-nucleotide siRNAs played a critical role in maintaining CHH methylation and repressing the activation of TEs in persistent endosperm development. This study discovered a novel genomic DNA methylation pattern and proposes the potential mechanism occurring in dicot seeds with persistent endosperm.

摘要

对种子中基因组DNA甲基化的研究一直局限于少数模式植物。被子植物中已鉴定出胚乳基因组DNA低甲基化,但由于在大多数双子叶植物中胚乳是短暂的,会随着种子发育而消失,因此很难剖析这种低甲基化是如何建立和维持的机制。蓖麻(Ricinus communis)与拟南芥(Arabidopsis thaliana)不同,其胚乳在整个种子发育过程中都持续存在,为剖析双子叶植物胚乳基因组低甲基化机制提供了一个绝佳模型。我们对编码DNA甲基转移酶和去甲基酶的DNA甲基化相关基因进行了表征,并分析了它们在不同组织中的表达谱。我们使用亚硫酸氢盐测序检查了胚乳和胚组织中的基因组甲基化,包括CG、CHG和CHH环境,结果发现,无论基因组中CHH的比例如何,胚乳和胚中CHH甲基化程度出乎意料地显著高于先前研究的植物。特别是,我们发现相对于胚,胚乳中CG和CHG甲基化程度整体降低,显著改变了整体基因表达。然而,胚乳中发生的CHH甲基化并没有显著降低。结合定位在转座元件(TE)区域内的24核苷酸小干扰RNA(siRNA)的表达以及参与RNA指导的DNA甲基化途径的基因,我们证明24核苷酸siRNA在维持CHH甲基化和抑制持久胚乳发育中TE的激活方面发挥了关键作用。本研究发现了一种新的基因组DNA甲基化模式,并提出了在具有持久胚乳的双子叶植物种子中发生的潜在机制。

相似文献

1
Genomic DNA Methylation Analyses Reveal the Distinct Profiles in Castor Bean Seeds with Persistent Endosperms.
Plant Physiol. 2016 Jun;171(2):1242-58. doi: 10.1104/pp.16.00056. Epub 2016 Apr 28.
2
Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean.
Nucleic Acids Res. 2014 Jun;42(11):6987-98. doi: 10.1093/nar/gku375. Epub 2014 May 5.
4
Dynamics of imprinted genes and their epigenetic mechanisms in castor bean seed with persistent endosperm.
New Phytol. 2023 Dec;240(5):1868-1882. doi: 10.1111/nph.19265. Epub 2023 Sep 17.
5
Differential expression networks and inheritance patterns of long non-coding RNAs in castor bean seeds.
Plant J. 2018 Jul;95(2):324-340. doi: 10.1111/tpj.13953. Epub 2018 May 31.
7
Global Analysis Reveals the Crucial Roles of DNA Methylation during Rice Seed Development.
Plant Physiol. 2015 Aug;168(4):1417-32. doi: 10.1104/pp.15.00414. Epub 2015 Jul 5.
10
Similarity between soybean and seed methylomes and loss of non-CG methylation does not affect seed development.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9730-E9739. doi: 10.1073/pnas.1716758114. Epub 2017 Oct 23.

引用本文的文献

1
Whole-Genome DNA Methylation Analysis of Inoculation with in Harvested Muskmelons.
J Fungi (Basel). 2025 Mar 22;11(4):243. doi: 10.3390/jof11040243.
3
Accurate cross-species 5mC detection for Oxford Nanopore sequencing in plants with DeepPlant.
Nat Commun. 2025 Apr 4;16(1):3227. doi: 10.1038/s41467-025-58576-x.
6
DNA Methylation is Involved in Sex Determination in Spinach.
Biochem Genet. 2024 Aug;62(4):2455-2468. doi: 10.1007/s10528-023-10524-4. Epub 2023 Nov 11.
7
Characteristics of methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis.
Hortic Res. 2023 May 31;10(7):uhad114. doi: 10.1093/hr/uhad114. eCollection 2023 Jul.
8
Distinct regulatory pathways contribute to dynamic CHH methylation patterns in transposable elements throughout embryogenesis.
Front Plant Sci. 2023 Jun 8;14:1204279. doi: 10.3389/fpls.2023.1204279. eCollection 2023.
10
Regulation of DNA Methylation During Plant Endosperm Development.
Front Genet. 2022 Feb 10;13:760690. doi: 10.3389/fgene.2022.760690. eCollection 2022.

本文引用的文献

1
CG gene body DNA methylation changes and evolution of duplicated genes in cassava.
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13729-34. doi: 10.1073/pnas.1519067112. Epub 2015 Oct 19.
2
Genome-Wide Epigenetic Regulation of Gene Transcription in Maize Seeds.
PLoS One. 2015 Oct 15;10(10):e0139582. doi: 10.1371/journal.pone.0139582. eCollection 2015.
3
Global Analysis Reveals the Crucial Roles of DNA Methylation during Rice Seed Development.
Plant Physiol. 2015 Aug;168(4):1417-32. doi: 10.1104/pp.15.00414. Epub 2015 Jul 5.
4
Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10642-7. doi: 10.1073/pnas.1410761111. Epub 2014 Jul 7.
5
Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize.
Plant Cell Rep. 2014 Oct;33(10):1661-72. doi: 10.1007/s00299-014-1645-0. Epub 2014 Jun 21.
6
Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean.
Nucleic Acids Res. 2014 Jun;42(11):6987-98. doi: 10.1093/nar/gku375. Epub 2014 May 5.
7
Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis.
Nat Struct Mol Biol. 2014 Jan;21(1):64-72. doi: 10.1038/nsmb.2735. Epub 2013 Dec 15.
9
Genome-wide analysis of DNA methylation in soybean.
Mol Plant. 2013 Nov;6(6):1961-74. doi: 10.1093/mp/sst123. Epub 2013 Aug 21.
10
Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinus communis L.).
PLoS One. 2013 Jul 24;8(7):e69995. doi: 10.1371/journal.pone.0069995. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验