Suppr超能文献

视网膜假体信息处理与编码的级联模型。

A cascade model of information processing and encoding for retinal prosthesis.

作者信息

Pei Zhi-Jun, Gao Guan-Xin, Hao Bo, Qiao Qing-Li, Ai Hui-Jian

机构信息

Department of Clinical Engineering, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China.

School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.

出版信息

Neural Regen Res. 2016 Apr;11(4):646-51. doi: 10.4103/1673-5374.180752.

Abstract

Retinal prosthesis offers a potential treatment for individuals suffering from photoreceptor degeneration diseases. Establishing biological retinal models and simulating how the biological retina convert incoming light signal into spike trains that can be properly decoded by the brain is a key issue. Some retinal models have been presented, ranking from structural models inspired by the layered architecture to functional models originated from a set of specific physiological phenomena. However, Most of these focus on stimulus image compression, edge detection and reconstruction, but do not generate spike trains corresponding to visual image. In this study, based on state-of-the-art retinal physiological mechanism, including effective visual information extraction, static nonlinear rectification of biological systems and neurons Poisson coding, a cascade model of the retina including the out plexiform layer for information processing and the inner plexiform layer for information encoding was brought forward, which integrates both anatomic connections and functional computations of retina. Using MATLAB software, spike trains corresponding to stimulus image were numerically computed by four steps: linear spatiotemporal filtering, static nonlinear rectification, radial sampling and then Poisson spike generation. The simulated results suggested that such a cascade model could recreate visual information processing and encoding functionalities of the retina, which is helpful in developing artificial retina for the retinally blind.

摘要

视网膜假体为患有光感受器退行性疾病的个体提供了一种潜在的治疗方法。建立生物视网膜模型并模拟生物视网膜如何将传入的光信号转换为可被大脑正确解码的尖峰序列是一个关键问题。已经提出了一些视网膜模型,从受分层结构启发的结构模型到源自一组特定生理现象的功能模型。然而,这些模型大多侧重于刺激图像压缩、边缘检测和重建,而没有生成与视觉图像相对应的尖峰序列。在本研究中,基于最先进的视网膜生理机制,包括有效的视觉信息提取、生物系统的静态非线性整流和神经元泊松编码,提出了一种视网膜级联模型,该模型包括用于信息处理的外网状层和用于信息编码的内网状层,它整合了视网膜的解剖连接和功能计算。使用MATLAB软件,通过线性时空滤波、静态非线性整流、径向采样然后泊松尖峰生成这四个步骤,数值计算出与刺激图像相对应的尖峰序列。模拟结果表明,这样的级联模型可以重现视网膜的视觉信息处理和编码功能,这有助于为视网膜失明者开发人工视网膜。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fb3/4870925/f600478ad07a/NRR-11-646-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验