Suppr超能文献

利用远程监测的依从性预测哮喘急性加重

Predicting asthma exacerbations employing remotely monitored adherence.

作者信息

Killane Isabelle, Sulaiman Imran, MacHale Elaine, Breathnach Aoife, Taylor Terence E, Holmes Martin S, Reilly Richard B, Costello Richard W

机构信息

Clinical Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, School of Engineering, Trinity College, University of Dublin, Dublin 2, Ireland.

Clinical Research Centre, Beaumont Hospital , Royal College of Surgeons in Ireland , Dublin , Ireland.

出版信息

Healthc Technol Lett. 2016 Mar 23;3(1):51-5. doi: 10.1049/htl.2015.0058. eCollection 2016 Mar.

Abstract

This Letter investigated the efficacy of a decision-support system, designed for respiratory medicine, at predicting asthma exacerbations in a multi-site longitudinal randomised control trial. Adherence to inhaler medication was acquired over 3 months from patients with asthma employing a dose counter and a remote monitoring adherence device which recorded participant's inhaler use: n = 184 (23,656 audio files), 61% women, age (mean ± sd) 49.3 ± 16.4. Data on occurrence of exacerbations was collected at three clinical visits, 1 month apart. The relative risk of an asthma exacerbation for those with good and poor adherence was examined employing a univariate and multivariate modified Poisson regression approach; adjusting for age, gender and body mass index. For all months dose counter adherence was significantly (p < 0.01) higher than remote monitoring adherence. Overall, those with poor adherence had a 1.38 ± 0.34 and 1.42 ± 0.39 (remotely monitored) and 1.25 ± 0.32 and 1.18 ± 0.31 (dose counter) higher relative risk of an exacerbation in model 1 and model 2, respectively. However, this was not found to be statistically significantly different. Remotely monitored adherence holds important clinical information and future research should focus on refining adherence and exacerbation measures. Decision-support systems based on remote monitoring may enhance patient-physician communication, possibly reducing preventable adverse events.

摘要

这封信在一项多中心纵向随机对照试验中,研究了一个为呼吸医学设计的决策支持系统在预测哮喘急性发作方面的疗效。通过使用剂量计数器和远程监测依从性设备,从哮喘患者中获取了3个月的吸入器药物依从性数据,该设备记录了参与者的吸入器使用情况:n = 184(23,656个音频文件),61%为女性,年龄(均值±标准差)49.3±16.4。在相隔1个月的三次临床就诊时收集了急性发作发生的数据。采用单变量和多变量修正泊松回归方法,对依从性良好和较差的患者发生哮喘急性发作的相对风险进行了检验;对年龄、性别和体重指数进行了调整。在所有月份中,剂量计数器的依从性显著高于远程监测的依从性(p < 0.01)。总体而言,在模型1和模型2中,依从性较差的患者急性发作的相对风险分别高出1.38±0.34和1.42±0.39(远程监测),以及1.25±0.32和1.18±0.31(剂量计数器)。然而,未发现这在统计学上有显著差异。远程监测的依从性包含重要的临床信息,未来的研究应专注于完善依从性和急性发作测量方法。基于远程监测的决策支持系统可能会加强医患沟通,有可能减少可预防的不良事件。

相似文献

1
Predicting asthma exacerbations employing remotely monitored adherence.利用远程监测的依从性预测哮喘急性加重
Healthc Technol Lett. 2016 Mar 23;3(1):51-5. doi: 10.1049/htl.2015.0058. eCollection 2016 Mar.

引用本文的文献

本文引用的文献

7
Potential predictors of relapse after treatment of asthma exacerbations in children.儿童哮喘急性发作治疗后复发的潜在预测因素。
Ann Allergy Asthma Immunol. 2014 Apr;112(4):361-4. doi: 10.1016/j.anai.2014.01.025. Epub 2014 Feb 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验