Division of Biostatistics, Weill Cornell Medicine, New York, New York.
Stat Med. 2019 Jul 10;38(15):2735-2748. doi: 10.1002/sim.8156. Epub 2019 Apr 4.
The consistency of doubly robust estimators relies on the consistent estimation of at least one of two nuisance regression parameters. In moderate-to-large dimensions, the use of flexible data-adaptive regression estimators may aid in achieving this consistency. However, n -consistency of doubly robust estimators is not guaranteed if one of the nuisance estimators is inconsistent. In this paper, we present a doubly robust estimator for survival analysis with the novel property that it converges to a Gaussian variable at an n -rate for a large class of data-adaptive estimators of the nuisance parameters, under the only assumption that at least one of them is consistently estimated at an n -rate. This result is achieved through the adaptation of recent ideas in semiparametric inference, which amount to (i) Gaussianizing (ie, making asymptotically linear) a drift term that arises in the asymptotic analysis of the doubly robust estimator and (ii) using cross-fitting to avoid entropy conditions on the nuisance estimators. We present the formula of the asymptotic variance of the estimator, which allows for the computation of doubly robust confidence intervals and p values. We illustrate the finite-sample properties of the estimator in simulation studies and demonstrate its use in a phase III clinical trial for estimating the effect of a novel therapy for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer.
双重稳健估计量的一致性依赖于对两个干扰回归参数中的至少一个进行一致估计。在中等至大维度中,使用灵活的数据自适应回归估计器可能有助于实现这种一致性。但是,如果其中一个干扰估计量不一致,则不能保证双重稳健估计量的 n 一致性。在本文中,我们提出了一种用于生存分析的双重稳健估计量,具有一个新颖的性质,即在一类大型数据自适应干扰参数估计量下,它以 n 速率收敛到高斯变量,前提是至少有一个以 n 速率进行一致估计。这一结果是通过在半参数推断中使用最新思想实现的,这些思想包括(i)使双重稳健估计量的渐近分析中出现的漂移项高斯化(即使其渐近线性),以及(ii)使用交叉拟合来避免干扰估计量的熵条件。我们给出了估计量的渐近方差公式,该公式允许计算双重稳健置信区间和 p 值。我们通过模拟研究说明了估计量的有限样本性质,并在一项用于估计新型治疗人表皮生长因子受体 2(HER2)阳性乳腺癌的治疗效果的 III 期临床试验中展示了其用途。