Suppr超能文献

糖尿病中心血管疾病的分子和细胞机制

Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes.

作者信息

Shah Manasi S, Brownlee Michael

机构信息

From the Diabetes Research Center (M.S.S., M.B.), Departments of Medicine (M.S.S., M.B.), and Pathology (M.B.), Albert Einstein College of Medicine, Bronx, New York, NY.

出版信息

Circ Res. 2016 May 27;118(11):1808-29. doi: 10.1161/CIRCRESAHA.116.306923.

Abstract

The clinical correlations linking diabetes mellitus with accelerated atherosclerosis, cardiomyopathy, and increased post-myocardial infarction fatality rates are increasingly understood in mechanistic terms. The multiple mechanisms discussed in this review seem to share a common element: prolonged increases in reactive oxygen species (ROS) production in diabetic cardiovascular cells. Intracellular hyperglycemia causes excessive ROS production. This activates nuclear poly(ADP-ribose) polymerase, which inhibits GAPDH, shunting early glycolytic intermediates into pathogenic signaling pathways. ROS and poly(ADP-ribose) polymerase also reduce sirtuin, PGC-1α, and AMP-activated protein kinase activity. These changes cause decreased mitochondrial biogenesis, increased ROS production, and disturbed circadian clock synchronization of glucose and lipid metabolism. Excessive ROS production also facilitates nuclear transport of proatherogenic transcription factors, increases transcription of the neutrophil enzyme initiating NETosis, peptidylarginine deiminase 4, and activates the NOD-like receptor family, pyrin domain-containing 3 inflammasome. Insulin resistance causes excessive cardiomyocyte ROS production by increasing fatty acid flux and oxidation. This stimulates overexpression of the nuclear receptor PPARα and nuclear translocation of forkhead box O 1, which cause cardiomyopathy. ROS also shift the balance between mitochondrial fusion and fission in favor of increased fission, reducing the metabolic capacity and efficiency of the mitochondrial electron transport chain and ATP synthesis. Mitochondrial oxidative stress also plays a central role in angiotensin II-induced gap junction remodeling and arrhythmogenesis. ROS contribute to sudden death in diabetics after myocardial infarction by increasing post-translational protein modifications, which cause increased ryanodine receptor phosphorylation and downregulation of sarco-endoplasmic reticulum Ca(++)-ATPase transcription. Increased ROS also depress autonomic ganglion synaptic transmission by oxidizing the nAch receptor α3 subunit, potentially contributing to the increased risk of fatal cardiac arrhythmias associated with diabetic cardiac autonomic neuropathy.

摘要

糖尿病与动脉粥样硬化加速、心肌病以及心肌梗死后死亡率增加之间的临床关联,正越来越多地从机制角度得到理解。本综述中讨论的多种机制似乎有一个共同要素:糖尿病心血管细胞中活性氧(ROS)生成的长期增加。细胞内高血糖会导致ROS过度生成。这会激活核聚(ADP - 核糖)聚合酶,其抑制甘油醛 - 3 - 磷酸脱氢酶,将早期糖酵解中间体分流至致病信号通路。ROS和聚(ADP - 核糖)聚合酶还会降低沉默调节蛋白、过氧化物酶体增殖物激活受体γ共激活因子1α(PGC - 1α)以及AMP激活的蛋白激酶活性。这些变化会导致线粒体生物合成减少、ROS生成增加以及葡萄糖和脂质代谢的昼夜节律时钟同步紊乱。过量的ROS生成还促进促动脉粥样硬化转录因子的核转运,增加启动中性粒细胞胞外诱捕网形成的中性粒细胞酶——肽基精氨酸脱亚氨酶4的转录,并激活含核苷酸结合寡聚化结构域样受体家族、含pyrin结构域的3炎性小体。胰岛素抵抗通过增加脂肪酸通量和氧化导致心肌细胞ROS过度生成。这会刺激核受体过氧化物酶体增殖物激活受体α(PPARα)的过度表达以及叉头框蛋白O1(FoxO1)的核转位,从而导致心肌病。ROS还会使线粒体融合与裂变之间的平衡向有利于增加裂变的方向转变,降低线粒体电子传递链的代谢能力和效率以及ATP合成。线粒体氧化应激在血管紧张素II诱导的缝隙连接重塑和心律失常发生中也起核心作用。ROS通过增加翻译后蛋白质修饰导致糖尿病患者心肌梗死后猝死,这种修饰会导致兰尼碱受体磷酸化增加以及肌浆网Ca²⁺ - ATP酶转录下调。ROS增加还会通过氧化烟碱型乙酰胆碱受体α3亚基抑制自主神经节突触传递,这可能导致与糖尿病心脏自主神经病变相关的致命性心律失常风险增加。

相似文献

6
Oxidative stress and diabetic complications.氧化应激与糖尿病并发症。
Circ Res. 2010 Oct 29;107(9):1058-70. doi: 10.1161/CIRCRESAHA.110.223545.

引用本文的文献

本文引用的文献

2
Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure.支链氨基酸的分解代谢缺陷促进心力衰竭。
Circulation. 2016 May 24;133(21):2038-49. doi: 10.1161/CIRCULATIONAHA.115.020226. Epub 2016 Apr 8.
3
4
Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy.糖尿病性心肌病中的胰岛素抵抗和高胰岛素血症。
Nat Rev Endocrinol. 2016 Mar;12(3):144-53. doi: 10.1038/nrendo.2015.216. Epub 2015 Dec 18.
5
NLRP3 inflammasome and its inhibitors: a review.NLRP3炎性小体及其抑制剂:综述
Front Pharmacol. 2015 Nov 5;6:262. doi: 10.3389/fphar.2015.00262. eCollection 2015.
6
Mitochondrial dynamics, mitophagy and cardiovascular disease.线粒体动力学、线粒体自噬与心血管疾病
J Physiol. 2016 Feb 1;594(3):509-25. doi: 10.1113/JP271301. Epub 2016 Jan 15.
8
Ceramides - Lipotoxic Inducers of Metabolic Disorders.神经酰胺——代谢紊乱的脂毒性诱导剂。
Trends Endocrinol Metab. 2015 Oct;26(10):538-550. doi: 10.1016/j.tem.2015.07.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验