Jędrzejewska-Szmek Joanna, Damodaran Sriraman, Dorman Daniel B, Blackwell Kim T
The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA.
Eur J Neurosci. 2017 Apr;45(8):1044-1056. doi: 10.1111/ejn.13287. Epub 2016 Jun 15.
The striatum is a major site of learning and memory formation for sensorimotor and cognitive association. One of the mechanisms used by the brain for memory storage is synaptic plasticity - the long-lasting, activity-dependent change in synaptic strength. All forms of synaptic plasticity require an elevation in intracellular calcium, and a common hypothesis is that the amplitude and duration of calcium transients can determine the direction of synaptic plasticity. The utility of this hypothesis in the striatum is unclear in part because dopamine is required for striatal plasticity and in part because of the diversity in stimulation protocols. To test whether calcium can predict plasticity direction, we developed a calcium-based plasticity rule using a spiny projection neuron model with sophisticated calcium dynamics including calcium diffusion, buffering and pump extrusion. We utilized three spike timing-dependent plasticity (STDP) induction protocols, in which postsynaptic potentials are paired with precisely timed action potentials and the timing of such pairing determines whether potentiation or depression will occur. Results show that despite the variation in calcium dynamics, a single, calcium-based plasticity rule, which explicitly considers duration of calcium elevations, can explain the direction of synaptic weight change for all three STDP protocols. Additional simulations show that the plasticity rule correctly predicts the NMDA receptor dependence of long-term potentiation and the L-type channel dependence of long-term depression. By utilizing realistic calcium dynamics, the model reveals mechanisms controlling synaptic plasticity direction, and shows that the dynamics of calcium, not just calcium amplitude, are crucial for synaptic plasticity.
纹状体是感觉运动和认知关联学习与记忆形成的主要部位。大脑用于记忆存储的机制之一是突触可塑性——突触强度的持久、活动依赖性变化。所有形式的突触可塑性都需要细胞内钙升高,一个常见的假说是钙瞬变的幅度和持续时间可以决定突触可塑性的方向。该假说在纹状体中的实用性尚不清楚,部分原因是纹状体可塑性需要多巴胺,部分原因是刺激方案的多样性。为了测试钙是否可以预测可塑性方向,我们使用具有复杂钙动力学(包括钙扩散、缓冲和泵出)的棘状投射神经元模型开发了一种基于钙的可塑性规则。我们采用了三种依赖于尖峰时间的可塑性(STDP)诱导方案,其中突触后电位与精确计时的动作电位配对,这种配对的时间决定了增强或抑制是否会发生。结果表明,尽管钙动力学存在差异,但一个明确考虑钙升高持续时间的单一基于钙的可塑性规则可以解释所有三种STDP方案中突触权重变化的方向。额外的模拟表明,可塑性规则正确地预测了长期增强对NMDA受体的依赖性以及长期抑制对L型通道的依赖性。通过利用现实的钙动力学,该模型揭示了控制突触可塑性方向的机制,并表明钙的动力学,而不仅仅是钙的幅度,对突触可塑性至关重要。