Suppr超能文献

钙动力学可预测纹状体棘状投射神经元中突触可塑性的方向。

Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.

作者信息

Jędrzejewska-Szmek Joanna, Damodaran Sriraman, Dorman Daniel B, Blackwell Kim T

机构信息

The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA.

出版信息

Eur J Neurosci. 2017 Apr;45(8):1044-1056. doi: 10.1111/ejn.13287. Epub 2016 Jun 15.

Abstract

The striatum is a major site of learning and memory formation for sensorimotor and cognitive association. One of the mechanisms used by the brain for memory storage is synaptic plasticity - the long-lasting, activity-dependent change in synaptic strength. All forms of synaptic plasticity require an elevation in intracellular calcium, and a common hypothesis is that the amplitude and duration of calcium transients can determine the direction of synaptic plasticity. The utility of this hypothesis in the striatum is unclear in part because dopamine is required for striatal plasticity and in part because of the diversity in stimulation protocols. To test whether calcium can predict plasticity direction, we developed a calcium-based plasticity rule using a spiny projection neuron model with sophisticated calcium dynamics including calcium diffusion, buffering and pump extrusion. We utilized three spike timing-dependent plasticity (STDP) induction protocols, in which postsynaptic potentials are paired with precisely timed action potentials and the timing of such pairing determines whether potentiation or depression will occur. Results show that despite the variation in calcium dynamics, a single, calcium-based plasticity rule, which explicitly considers duration of calcium elevations, can explain the direction of synaptic weight change for all three STDP protocols. Additional simulations show that the plasticity rule correctly predicts the NMDA receptor dependence of long-term potentiation and the L-type channel dependence of long-term depression. By utilizing realistic calcium dynamics, the model reveals mechanisms controlling synaptic plasticity direction, and shows that the dynamics of calcium, not just calcium amplitude, are crucial for synaptic plasticity.

摘要

纹状体是感觉运动和认知关联学习与记忆形成的主要部位。大脑用于记忆存储的机制之一是突触可塑性——突触强度的持久、活动依赖性变化。所有形式的突触可塑性都需要细胞内钙升高,一个常见的假说是钙瞬变的幅度和持续时间可以决定突触可塑性的方向。该假说在纹状体中的实用性尚不清楚,部分原因是纹状体可塑性需要多巴胺,部分原因是刺激方案的多样性。为了测试钙是否可以预测可塑性方向,我们使用具有复杂钙动力学(包括钙扩散、缓冲和泵出)的棘状投射神经元模型开发了一种基于钙的可塑性规则。我们采用了三种依赖于尖峰时间的可塑性(STDP)诱导方案,其中突触后电位与精确计时的动作电位配对,这种配对的时间决定了增强或抑制是否会发生。结果表明,尽管钙动力学存在差异,但一个明确考虑钙升高持续时间的单一基于钙的可塑性规则可以解释所有三种STDP方案中突触权重变化的方向。额外的模拟表明,可塑性规则正确地预测了长期增强对NMDA受体的依赖性以及长期抑制对L型通道的依赖性。通过利用现实的钙动力学,该模型揭示了控制突触可塑性方向的机制,并表明钙的动力学,而不仅仅是钙的幅度,对突触可塑性至关重要。

相似文献

1
Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.
Eur J Neurosci. 2017 Apr;45(8):1044-1056. doi: 10.1111/ejn.13287. Epub 2016 Jun 15.
5
The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons.
PLoS Comput Biol. 2012;8(4):e1002493. doi: 10.1371/journal.pcbi.1002493. Epub 2012 Apr 19.
6
Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates.
J Neurophysiol. 2013 Oct;110(7):1631-45. doi: 10.1152/jn.00232.2013. Epub 2013 Jul 10.
7
Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
J Neurosci. 2008 Mar 5;28(10):2435-46. doi: 10.1523/JNEUROSCI.4402-07.2008.
8
A calcium-influx-dependent plasticity model exhibiting multiple STDP curves.
J Comput Neurosci. 2020 Feb;48(1):65-84. doi: 10.1007/s10827-019-00737-1. Epub 2020 Jan 24.
9
Interplay of multiple pathways and activity-dependent rules in STDP.
PLoS Comput Biol. 2018 Aug 14;14(8):e1006184. doi: 10.1371/journal.pcbi.1006184. eCollection 2018 Aug.
10
Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
J Physiol. 2015 Jul 1;593(13):2833-49. doi: 10.1113/JP270324. Epub 2015 May 13.

引用本文的文献

2
Heterosynaptic plasticity-induced modulation of synapses.
J Physiol Sci. 2023 Dec 6;73(1):33. doi: 10.1186/s12576-023-00893-1.
4
GluN2B-NMDAR subunit contribution on synaptic plasticity: A phenomenological model for CA3-CA1 synapses.
Front Synaptic Neurosci. 2023 Mar 15;15:1113957. doi: 10.3389/fnsyn.2023.1113957. eCollection 2023.
5
Unraveling the dynamics of dopamine release and its actions on target cells.
Trends Neurosci. 2023 Mar;46(3):228-239. doi: 10.1016/j.tins.2022.12.005. Epub 2023 Jan 10.
7
Dendritic spine morphology regulates calcium-dependent synaptic weight change.
J Gen Physiol. 2022 Aug 1;154(8). doi: 10.1085/jgp.202112980. Epub 2022 Jul 12.
8
Computational investigation of the dynamic control of cAMP signaling by PDE4 isoform types.
Biophys J. 2022 Jul 19;121(14):2693-2711. doi: 10.1016/j.bpj.2022.06.019. Epub 2022 Jun 18.

本文引用的文献

1
Coordination of Protein Phosphorylation and Dephosphorylation in Synaptic Plasticity.
J Biol Chem. 2015 Nov 27;290(48):28604-12. doi: 10.1074/jbc.R115.657262. Epub 2015 Oct 9.
2
Multimodal Plasticity in Dorsal Striatum While Learning a Lateralized Navigation Task.
J Neurosci. 2015 Jul 22;35(29):10535-49. doi: 10.1523/JNEUROSCI.4415-14.2015.
3
Calcium: amplitude, duration, or location?
Biol Bull. 2015 Feb;228(1):75-83. doi: 10.1086/BBLv228n1p75.
4
A critical time window for dopamine actions on the structural plasticity of dendritic spines.
Science. 2014 Sep 26;345(6204):1616-20. doi: 10.1126/science.1255514.
6
Cyclic AMP and afferent activity govern bidirectional synaptic plasticity in striatopallidal neurons.
J Neurosci. 2014 May 7;34(19):6692-9. doi: 10.1523/JNEUROSCI.3906-13.2014.
7
Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons.
J Neurophysiol. 2014 Jul 15;112(2):287-99. doi: 10.1152/jn.00066.2014. Epub 2014 Apr 23.
8
Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates.
J Neurophysiol. 2013 Oct;110(7):1631-45. doi: 10.1152/jn.00232.2013. Epub 2013 Jul 10.
9
GABAergic circuits control spike-timing-dependent plasticity.
J Neurosci. 2013 May 29;33(22):9353-63. doi: 10.1523/JNEUROSCI.5796-12.2013.
10
Strain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice.
J Neurosci. 2012 Jul 4;32(27):9124-32. doi: 10.1523/JNEUROSCI.0229-12.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验