Suppr超能文献

在深度网络中堆叠去噪自动编码器以对脑癌患者的MRI脑干进行分割:一项临床研究。

Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study.

作者信息

Dolz Jose, Betrouni Nacim, Quidet Mathilde, Kharroubi Dris, Leroy Henri A, Reyns Nicolas, Massoptier Laurent, Vermandel Maximilien

机构信息

AQUILAB, Loos-les-Lille, France; Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France.

Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France.

出版信息

Comput Med Imaging Graph. 2016 Sep;52:8-18. doi: 10.1016/j.compmedimag.2016.03.003. Epub 2016 May 13.

Abstract

Delineation of organs at risk (OARs) is a crucial step in surgical and treatment planning in brain cancer, where precise OARs volume delineation is required. However, this task is still often manually performed, which is time-consuming and prone to observer variability. To tackle these issues a deep learning approach based on stacking denoising auto-encoders has been proposed to segment the brainstem on magnetic resonance images in brain cancer context. Additionally to classical features used in machine learning to segment brain structures, two new features are suggested. Four experts participated in this study by segmenting the brainstem on 9 patients who underwent radiosurgery. Analysis of variance on shape and volume similarity metrics indicated that there were significant differences (p<0.05) between the groups of manual annotations and automatic segmentations. Experimental evaluation also showed an overlapping higher than 90% with respect to the ground truth. These results are comparable, and often higher, to those of the state of the art segmentation methods but with a considerably reduction of the segmentation time.

摘要

在脑癌的手术和治疗规划中,勾画危及器官(OARs)是关键步骤,需要精确勾勒OARs的体积。然而,这项任务仍常常由人工完成,既耗时又容易出现观察者差异。为解决这些问题,已提出一种基于堆叠去噪自动编码器的深度学习方法,用于在脑癌背景下对磁共振图像中的脑干进行分割。除了机器学习中用于分割脑结构的经典特征外,还提出了两个新特征。四位专家参与了本研究,他们对9例接受放射外科手术的患者的脑干进行了分割。形状和体积相似性指标的方差分析表明,手动标注组和自动分割组之间存在显著差异(p<0.05)。实验评估还显示,与真实情况相比,重叠率高于90%。这些结果与现有最先进的分割方法相当,且往往更高,但分割时间大幅缩短。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验