Suppr超能文献

用于有效绝热电子耦合的多态密度泛函理论

Multistate Density Functional Theory for Effective Diabatic Electronic Coupling.

作者信息

Ren Haisheng, Provorse Makenzie R, Bao Peng, Qu Zexing, Gao Jiali

机构信息

Department of Chemistry and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States.

Chemistry and Chemical Biology, University of California Merced , Merced, California 95343, United States.

出版信息

J Phys Chem Lett. 2016 Jun 16;7(12):2286-93. doi: 10.1021/acs.jpclett.6b00915. Epub 2016 Jun 7.

Abstract

Multistate density functional theory (MSDFT) is presented to estimate the effective transfer integral associated with electron and hole transfer reactions. In this approach, the charge-localized diabatic states are defined by block localization of Kohn-Sham orbitals, which constrain the electron density for each diabatic state in orbital space. This differs from the procedure used in constrained density functional theory that partitions the density within specific spatial regions. For a series of model systems, the computed transfer integrals are consistent with experimental data and show the expected exponential attenuation with the donor-acceptor separation. The present method can be used to model charge transfer reactions including processes involving coupled electron and proton transfer.

摘要

提出了多态密度泛函理论(MSDFT)来估计与电子和空穴转移反应相关的有效转移积分。在这种方法中,电荷局域化的非绝热态由Kohn-Sham轨道的块定位定义,这在轨道空间中约束了每个非绝热态的电子密度。这与约束密度泛函理论中用于在特定空间区域内划分密度的过程不同。对于一系列模型系统,计算得到的转移积分与实验数据一致,并显示出随着供体-受体间距预期的指数衰减。本方法可用于模拟电荷转移反应,包括涉及耦合电子和质子转移的过程。

相似文献

1
Multistate Density Functional Theory for Effective Diabatic Electronic Coupling.
J Phys Chem Lett. 2016 Jun 16;7(12):2286-93. doi: 10.1021/acs.jpclett.6b00915. Epub 2016 Jun 7.
2
Minimal Active Space for Diradicals Using Multistate Density Functional Theory.
Molecules. 2022 May 27;27(11):3466. doi: 10.3390/molecules27113466.
6
Target State Optimized Density Functional Theory for Electronic Excited and Diabatic States.
J Chem Theory Comput. 2023 Mar 28;19(6):1777-1789. doi: 10.1021/acs.jctc.2c01317. Epub 2023 Mar 14.
7
Block-Localized Excitation for Excimer Complex and Diabatic Coupling.
J Chem Theory Comput. 2021 Jan 12;17(1):240-254. doi: 10.1021/acs.jctc.0c01015. Epub 2020 Dec 28.
9
Diabatic-At-Construction Method for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional Theory.
J Chem Theory Comput. 2017 Mar 14;13(3):1176-1187. doi: 10.1021/acs.jctc.6b01176. Epub 2017 Feb 13.
10
Diabatic States at Construction (DAC) through Generalized Singular Value Decomposition.
J Phys Chem Lett. 2018 Oct 18;9(20):6038-6046. doi: 10.1021/acs.jpclett.8b02472. Epub 2018 Oct 4.

引用本文的文献

1
State-Specific Configuration Interaction for Excited States.
J Chem Theory Comput. 2023 Apr 25;19(8):2258-2269. doi: 10.1021/acs.jctc.3c00057. Epub 2023 Apr 6.
3
Minimal Active Space for Diradicals Using Multistate Density Functional Theory.
Molecules. 2022 May 27;27(11):3466. doi: 10.3390/molecules27113466.
4
Multireference Density Functional Theory for Describing Ground and Excited States with Renormalized Singles.
J Phys Chem Lett. 2022 Jan 27;13(3):894-903. doi: 10.1021/acs.jpclett.1c03913. Epub 2022 Jan 20.
5
Resolving Chemical Dynamics in Biological Energy Conversion: Long-Range Proton-Coupled Electron Transfer in Respiratory Complex I.
Acc Chem Res. 2021 Dec 21;54(24):4462-4473. doi: 10.1021/acs.accounts.1c00524. Epub 2021 Dec 13.
6
Accurate and Transferable Reactive Molecular Dynamics Models from Constrained Density Functional Theory.
J Phys Chem B. 2021 Sep 23;125(37):10471-10480. doi: 10.1021/acs.jpcb.1c05992. Epub 2021 Sep 14.
7
Block-Localized Excitation for Excimer Complex and Diabatic Coupling.
J Chem Theory Comput. 2021 Jan 12;17(1):240-254. doi: 10.1021/acs.jctc.0c01015. Epub 2020 Dec 28.
8
Dynamical and allosteric regulation of photoprotection in light harvesting complex II.
Sci China Chem. 2020 Aug;63(8):1121-1133. doi: 10.1007/s11426-020-9771-2. Epub 2020 Jun 15.
9
Understanding and Tracking the Excess Proton in Ab Initio Simulations; Insights from IR Spectra.
J Phys Chem B. 2020 Jul 9;124(27):5696-5708. doi: 10.1021/acs.jpcb.0c03615. Epub 2020 Jun 24.

本文引用的文献

1
Communication: CDFT-CI couplings can be unreliable when there is fractional charge transfer.
J Chem Phys. 2015 Dec 21;143(23):231102. doi: 10.1063/1.4938103.
2
Constrained Density Functional Theory and Its Application in Long-Range Electron Transfer.
J Chem Theory Comput. 2006 May;2(3):765-74. doi: 10.1021/ct0503163.
5
Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions.
Chem Rev. 2015 Oct 28;115(20):11191-238. doi: 10.1021/acs.chemrev.5b00298. Epub 2015 Oct 20.
7
The quantum coherent mechanism for singlet fission: experiment and theory.
Acc Chem Res. 2013 Jun 18;46(6):1321-9. doi: 10.1021/ar300286s. Epub 2013 Apr 12.
9
Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory.
Phys Chem Chem Phys. 2011 Apr 21;13(15):6760-75. doi: 10.1039/c0cp02206c. Epub 2011 Mar 2.
10
On the Interfragment Exchange in the X-Pol Method.
J Chem Theory Comput. 2010;6(8):2469-2476. doi: 10.1021/ct100268p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验