Suppr超能文献

小内含子剪接受FUS调控,并受肌萎缩侧索硬化症相关FUS突变体的影响。

Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants.

作者信息

Reber Stefan, Stettler Jolanda, Filosa Giuseppe, Colombo Martino, Jutzi Daniel, Lenzken Silvia C, Schweingruber Christoph, Bruggmann Rémy, Bachi Angela, Barabino Silvia Ml, Mühlemann Oliver, Ruepp Marc-David

机构信息

Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.

Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.

出版信息

EMBO J. 2016 Jul 15;35(14):1504-21. doi: 10.15252/embj.201593791. Epub 2016 Jun 1.

Abstract

Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival.

摘要

肉瘤融合蛋白(FUS)是一种广泛表达的RNA结合蛋白,被认为在多种RNA代谢途径中发挥作用,包括转录调控、前体mRNA剪接、RNA转运和微小RNA加工。在肌萎缩侧索硬化症(ALS)患者中发现了FUS基因的突变,但这些突变导致ALS的发病机制尚不清楚。在这里,我们表明FUS与次要剪接体成分U11 snRNP相互作用,优先结合次要内含子并直接调节其去除。此外,神经母细胞瘤细胞中的FUS基因敲除强烈干扰了含次要内含子的mRNA的剪接,其中包括动作电位传递和功能性脊髓运动单位所需的mRNA。此外,形成细胞质聚集体的与ALS相关的FUS突变体通过将U11和U12 snRNAs捕获在这些聚集体中而抑制次要内含子的剪接。总的来说,我们的研究结果提示了一种可能的ALS发病机制,即突变的FUS抑制了编码运动神经元存活所需蛋白质的mRNA中次要内含子的正确剪接。

相似文献

1
Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants.
EMBO J. 2016 Jul 15;35(14):1504-21. doi: 10.15252/embj.201593791. Epub 2016 Jun 1.
2
ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation.
PLoS Genet. 2013 Oct;9(10):e1003895. doi: 10.1371/journal.pgen.1003895. Epub 2013 Oct 31.
4
FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention.
Nucleic Acids Res. 2020 Jul 9;48(12):6889-6905. doi: 10.1093/nar/gkaa410.
5
ALS mutations in TLS/FUS disrupt target gene expression.
Genes Dev. 2015 Aug 15;29(16):1696-706. doi: 10.1101/gad.267286.115. Epub 2015 Aug 6.
8
Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways.
Acta Neuropathol. 2016 Aug;132(2):175-196. doi: 10.1007/s00401-016-1575-8. Epub 2016 May 10.
9
[The FUS protein: Physiological functions and a role in amyotrophic lateral sclerosis].
Mol Biol (Mosk). 2017 May-Jun;51(3):387-399. doi: 10.7868/S0026898417020094.
10
Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis.
Brain. 2019 Sep 1;142(9):2572-2580. doi: 10.1093/brain/awz217.

引用本文的文献

2
hnRNPs: roles in neurodevelopment and implication for brain disorders.
Front Mol Neurosci. 2024 Jul 17;17:1411639. doi: 10.3389/fnmol.2024.1411639. eCollection 2024.
3
Liquid-liquid phase separation in diseases.
MedComm (2020). 2024 Jul 13;5(7):e640. doi: 10.1002/mco2.640. eCollection 2024 Jul.
7
Drosha-dependent microRNAs modulate FUS-mediated neurodegeneration in vivo.
Nucleic Acids Res. 2023 Nov 10;51(20):11258-11276. doi: 10.1093/nar/gkad774.
8
Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39.
Nat Commun. 2023 Sep 4;14(1):5366. doi: 10.1038/s41467-023-40254-5.
9
Minor intron splicing is critical for survival of lethal prostate cancer.
Mol Cell. 2023 Jun 15;83(12):1983-2002.e11. doi: 10.1016/j.molcel.2023.05.017. Epub 2023 Jun 8.
10
RIP-PEN-seq identifies a class of kink-turn RNAs as splicing regulators.
Nat Biotechnol. 2024 Jan;42(1):119-131. doi: 10.1038/s41587-023-01749-0. Epub 2023 Apr 10.

本文引用的文献

1
Nucleic acid-binding specificity of human FUS protein.
Nucleic Acids Res. 2015 Sep 3;43(15):7535-43. doi: 10.1093/nar/gkv679. Epub 2015 Jul 6.
2
Position-specific binding of FUS to nascent RNA regulates mRNA length.
Genes Dev. 2015 May 15;29(10):1045-57. doi: 10.1101/gad.255737.114.
3
The Clothes Make the mRNA: Past and Present Trends in mRNP Fashion.
Annu Rev Biochem. 2015;84:325-54. doi: 10.1146/annurev-biochem-080111-092106. Epub 2015 Mar 11.
6
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
8
Towards understanding RNA-mediated neurological disorders.
J Genet Genomics. 2014 Sep 20;41(9):473-84. doi: 10.1016/j.jgg.2014.08.003. Epub 2014 Aug 23.
9
HTSeq--a Python framework to work with high-throughput sequencing data.
Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25.
10
Biochemical defects in minor spliceosome function in the developmental disorder MOPD I.
RNA. 2014 Jul;20(7):1078-89. doi: 10.1261/rna.045187.114. Epub 2014 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验