Suppr超能文献

14.1T 下 H-FID-MRSI 的降噪技术:蒙特卡罗验证和体内应用。

Noise-reduction techniques for H-FID-MRSI at 14.1 T: Monte Carlo validation and in vivo application.

机构信息

CIBM Center for Biomedical Imaging, Lausanne, Switzerland.

Animal Imaging and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

NMR Biomed. 2024 Nov;37(11):e5211. doi: 10.1002/nbm.5211. Epub 2024 Jul 23.

Abstract

Proton magnetic resonance spectroscopic imaging (H-MRSI) is a powerful tool that enables the multidimensional non-invasive mapping of the neurochemical profile at high resolution over the entire brain. The constant demand for higher spatial resolution in H-MRSI has led to increased interest in post-processing-based denoising methods aimed at reducing noise variance. The aim of the present study was to implement two noise-reduction techniques, Marchenko-Pastur principal component analysis (MP-PCA) based denoising and low-rank total generalized variation (LR-TGV) reconstruction, and to test their potential with and impact on preclinical 14.1 T fast in vivo H-FID-MRSI datasets. Since there is no known ground truth for in vivo metabolite maps, additional evaluations of the performance of both noise-reduction strategies were conducted using Monte Carlo simulations. Results showed that both denoising techniques increased the apparent signal-to-noise ratio (SNR) while preserving noise properties in each spectrum for both in vivo and Monte Carlo datasets. Relative metabolite concentrations were not significantly altered by either method and brain regional differences were preserved in both synthetic and in vivo datasets. Increased precision of metabolite estimates was observed for the two methods, with inconsistencies noted for lower-concentration metabolites. Our study provided a framework for how to evaluate the performance of MP-PCA and LR-TGV methods for preclinical H-FID MRSI data at 14.1 T. While gains in apparent SNR and precision were observed, concentration estimations ought to be treated with care, especially for low-concentration metabolites.

摘要

质子磁共振波谱成像(H-MRSI)是一种强大的工具,可实现高分辨率的整个大脑神经化学特征的多维非侵入性映射。对 H-MRSI 中更高空间分辨率的持续需求导致了对基于后处理的去噪方法的兴趣增加,这些方法旨在降低噪声方差。本研究的目的是实施两种降噪技术,即基于 Marchenko-Pastur 主成分分析(MP-PCA)的去噪和低秩全广义变分(LR-TGV)重建,并测试它们在临床前 14.1T 快速体内 H-FID-MRSI 数据集上的潜力及其影响。由于体内代谢物图谱没有已知的真实情况,因此使用蒙特卡罗模拟对这两种降噪策略的性能进行了额外评估。结果表明,这两种去噪技术都增加了表观信噪比(SNR),同时保留了体内和蒙特卡罗数据集每个谱的噪声特性。相对代谢物浓度不受这两种方法的显著影响,在合成和体内数据集都保留了脑区差异。两种方法都观察到代谢物估计的精度提高,对于低浓度代谢物,注意到不一致的情况。我们的研究为如何在 14.1T 评估 MP-PCA 和 LR-TGV 方法在临床前 H-FID MRSI 数据中的性能提供了一个框架。虽然观察到表观 SNR 和精度的提高,但浓度估计应该谨慎对待,尤其是对于低浓度的代谢物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验