Suppr超能文献

基于支持向量机的系统开发,利用化合物的化学结构预测其是否为给定药物转运体的底物。

Development of a Support Vector Machine-Based System to Predict Whether a Compound Is a Substrate of a Given Drug Transporter Using Its Chemical Structure.

作者信息

Ose Atsushi, Toshimoto Kota, Ikeda Kazushi, Maeda Kazuya, Yoshida Shuya, Yamashita Fumiyoshi, Hashida Mitsuru, Ishida Takashi, Akiyama Yutaka, Sugiyama Yuichi

机构信息

Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, 1-105 Kanda Jinbocho, Chiyoda-ku, Tokyo 101-8101, Japan.

Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, 1-6, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

出版信息

J Pharm Sci. 2016 Jul;105(7):2222-30. doi: 10.1016/j.xphs.2016.04.023. Epub 2016 Jun 1.

Abstract

The aim of this study was to develop an in silico prediction system to assess which of 7 categories of drug transporters (organic anion transporting polypeptide [OATP] 1B1/1B3, multidrug resistance-associated protein [MRP] 2/3/4, organic anion transporter [OAT] 1, OAT3, organic cation transporter [OCT] 1/2/multidrug and toxin extrusion [MATE] 1/2-K, multidrug resistance protein 1 [MDR1], and breast cancer resistance protein [BCRP]) can recognize compounds as substrates using its chemical structure alone. We compiled an internal data set consisting of 260 compounds that are substrates for at least 1 of the 7 categories of drug transporters. Four physicochemical parameters (charge, molecular weight, lipophilicity, and plasma unbound fraction) of each compound were used as the basic descriptors. Furthermore, a greedy algorithm was used to select 3 additional physicochemical descriptors from 731 available descriptors. In addition, transporter nonsubstrates tend not to be in the public domain; we, thus, tried to compile an expert-curated data set of putative nonsubstrates for each transporter using personal opinions of 11 researchers in the field of drug transporters. The best prediction was finally achieved by a support vector machine based on 4 basic and 3 additional descriptors. The model correctly judged that 364 of 412 compounds (internal data set) and 111 of 136 compounds (external data set) were substrates, indicating that this model performs well enough to predict the specificity of transporter substrates.

摘要

本研究的目的是开发一种计算机预测系统,以评估7类药物转运体(有机阴离子转运多肽[OATP]1B1/1B3、多药耐药相关蛋白[MRP]2/3/4、有机阴离子转运体[OAT]1、OAT3、有机阳离子转运体[OCT]1/2/多药和毒素外排[MATE]1/2-K、多药耐药蛋白1[MDR1]和乳腺癌耐药蛋白[BCRP])中哪些能够仅根据化合物的化学结构将其识别为底物。我们汇编了一个内部数据集,其中包含260种化合物,这些化合物是7类药物转运体中至少1种的底物。每种化合物的四个物理化学参数(电荷、分子量、亲脂性和血浆游离分数)被用作基本描述符。此外,使用贪婪算法从731个可用描述符中选择3个额外的物理化学描述符。另外,转运体非底物往往不在公共领域;因此,我们试图利用药物转运体领域11位研究人员的个人意见,为每个转运体汇编一个由专家精心策划的假定非底物数据集。最终,基于4个基本描述符和3个额外描述符的支持向量机实现了最佳预测。该模型正确判断出412种化合物(内部数据集)中的364种和136种化合物(外部数据集)中的111种为底物,表明该模型在预测转运体底物特异性方面表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验