Suppr超能文献

利用半监督流形学习的样本外推断(OSE-SSL):用于组织病理学图像的基于内容的图像检索

Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images.

作者信息

Sparks Rachel, Madabhushi Anant

机构信息

University College of London, Centre for Medical Image Computing, London, UK.

Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH, USA.

出版信息

Sci Rep. 2016 Jun 6;6:27306. doi: 10.1038/srep27306.

Abstract

Content-based image retrieval (CBIR) retrieves database images most similar to the query image by (1) extracting quantitative image descriptors and (2) calculating similarity between database and query image descriptors. Recently, manifold learning (ML) has been used to perform CBIR in a low dimensional representation of the high dimensional image descriptor space to avoid the curse of dimensionality. ML schemes are computationally expensive, requiring an eigenvalue decomposition (EVD) for every new query image to learn its low dimensional representation. We present out-of-sample extrapolation utilizing semi-supervised ML (OSE-SSL) to learn the low dimensional representation without recomputing the EVD for each query image. OSE-SSL incorporates semantic information, partial class label, into a ML scheme such that the low dimensional representation co-localizes semantically similar images. In the context of prostate histopathology, gland morphology is an integral component of the Gleason score which enables discrimination between prostate cancer aggressiveness. Images are represented by shape features extracted from the prostate gland. CBIR with OSE-SSL for prostate histology obtained from 58 patient studies, yielded an area under the precision recall curve (AUPRC) of 0.53 ± 0.03 comparatively a CBIR with Principal Component Analysis (PCA) to learn a low dimensional space yielded an AUPRC of 0.44 ± 0.01.

摘要

基于内容的图像检索(CBIR)通过以下方式检索与查询图像最相似的数据库图像:(1)提取定量图像描述符;(2)计算数据库图像描述符与查询图像描述符之间的相似度。最近,流形学习(ML)已被用于在高维图像描述符空间的低维表示中执行CBIR,以避免维数灾难。ML方案计算成本高昂,对于每个新的查询图像都需要进行特征值分解(EVD)以学习其低维表示。我们提出利用半监督ML的样本外推断(OSE-SSL)来学习低维表示,而无需为每个查询图像重新计算EVD。OSE-SSL将语义信息(部分类别标签)纳入ML方案,使得低维表示将语义相似的图像共定位。在前列腺组织病理学的背景下,腺体形态是Gleason评分的一个组成部分,它能够区分前列腺癌的侵袭性。图像由从前列腺提取的形状特征表示。对来自58项患者研究的前列腺组织学进行OSE-SSL的CBIR,精确召回率曲线下面积(AUPRC)为0.53±0.03,相比之下,使用主成分分析(PCA)学习低维空间的CBIR的AUPRC为0.44±0.01。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7004/4893667/ff232161f0b4/srep27306-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验