Suppr超能文献

利用机器学习识别外周动脉疾病及未来死亡风险。

The use of machine learning for the identification of peripheral artery disease and future mortality risk.

作者信息

Ross Elsie Gyang, Shah Nigam H, Dalman Ronald L, Nead Kevin T, Cooke John P, Leeper Nicholas J

机构信息

Division of Vascular Surgery, Stanford Health Care, Stanford, Calif.

Center for Biomedical Informatics Research, Stanford University, Stanford, Calif.

出版信息

J Vasc Surg. 2016 Nov;64(5):1515-1522.e3. doi: 10.1016/j.jvs.2016.04.026. Epub 2016 Jun 3.

Abstract

OBJECTIVE

A key aspect of the precision medicine effort is the development of informatics tools that can analyze and interpret "big data" sets in an automated and adaptive fashion while providing accurate and actionable clinical information. The aims of this study were to develop machine learning algorithms for the identification of disease and the prognostication of mortality risk and to determine whether such models perform better than classical statistical analyses.

METHODS

Focusing on peripheral artery disease (PAD), patient data were derived from a prospective, observational study of 1755 patients who presented for elective coronary angiography. We employed multiple supervised machine learning algorithms and used diverse clinical, demographic, imaging, and genomic information in a hypothesis-free manner to build models that could identify patients with PAD and predict future mortality. Comparison was made to standard stepwise linear regression models.

RESULTS

Our machine-learned models outperformed stepwise logistic regression models both for the identification of patients with PAD (area under the curve, 0.87 vs 0.76, respectively; P = .03) and for the prediction of future mortality (area under the curve, 0.76 vs 0.65, respectively; P = .10). Both machine-learned models were markedly better calibrated than the stepwise logistic regression models, thus providing more accurate disease and mortality risk estimates.

CONCLUSIONS

Machine learning approaches can produce more accurate disease classification and prediction models. These tools may prove clinically useful for the automated identification of patients with highly morbid diseases for which aggressive risk factor management can improve outcomes.

摘要

目的

精准医疗工作的一个关键方面是开发信息学工具,这些工具能够以自动化和自适应的方式分析和解释“大数据”集,同时提供准确且可操作的临床信息。本研究的目的是开发用于疾病识别和死亡风险预测的机器学习算法,并确定这些模型是否比经典统计分析表现更好。

方法

以外周动脉疾病(PAD)为重点,患者数据来自一项对1755名因择期冠状动脉造影就诊患者的前瞻性观察研究。我们采用了多种监督式机器学习算法,并以无假设的方式使用各种临床、人口统计学、影像学和基因组信息来构建能够识别PAD患者并预测未来死亡率的模型。与标准逐步线性回归模型进行了比较。

结果

我们的机器学习模型在识别PAD患者方面(曲线下面积分别为0.87和0.76;P = 0.03)以及预测未来死亡率方面(曲线下面积分别为0.76和0.65;P = 0.10)均优于逐步逻辑回归模型。两种机器学习模型的校准均明显优于逐步逻辑回归模型,从而提供了更准确的疾病和死亡风险估计。

结论

机器学习方法可以产生更准确的疾病分类和预测模型。这些工具可能在临床上有助于自动识别患有高发病的患者,对于这些患者,积极的危险因素管理可以改善预后。

相似文献

1
The use of machine learning for the identification of peripheral artery disease and future mortality risk.
J Vasc Surg. 2016 Nov;64(5):1515-1522.e3. doi: 10.1016/j.jvs.2016.04.026. Epub 2016 Jun 3.
2
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
3
Predicting Future Cardiovascular Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data.
Circ Cardiovasc Qual Outcomes. 2019 Mar;12(3):e004741. doi: 10.1161/CIRCOUTCOMES.118.004741.
4
Administrative data are not sensitive for the detection of peripheral artery disease in the community.
Vasc Med. 2016 Aug;21(4):331-6. doi: 10.1177/1358863X16631041. Epub 2016 Apr 25.
6
Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention.
JACC Cardiovasc Interv. 2019 Jul 22;12(14):1304-1311. doi: 10.1016/j.jcin.2019.02.035. Epub 2019 Jun 26.
8
Use of Natural Language Processing to Improve Identification of Patients With Peripheral Artery Disease.
Circ Cardiovasc Interv. 2020 Oct;13(10):e009447. doi: 10.1161/CIRCINTERVENTIONS.120.009447. Epub 2020 Oct 12.
10
Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy.
BJU Int. 2019 Jan;123(1):51-57. doi: 10.1111/bju.14477. Epub 2018 Aug 5.

引用本文的文献

1
Diagnosis models to predict peripheral arterial disease: a systematic review and meta analysis.
Sci Rep. 2025 Jul 22;15(1):26661. doi: 10.1038/s41598-025-10459-3.
2
Monitoring strategies for continuous evaluation of deployed clinical prediction models.
J Biomed Inform. 2025 Aug;168:104854. doi: 10.1016/j.jbi.2025.104854. Epub 2025 Jun 5.
5
A Glimpse Into the Black Box: Using Machine Learning to Prioritize Predictors of Vascular Disease.
JACC Adv. 2023 Aug 23;2(7):100563. doi: 10.1016/j.jacadv.2023.100563. eCollection 2023 Sep.
8
Identifying the risk factors of ICU-acquired fungal infections: clinical evidence from using machine learning.
Front Med (Lausanne). 2024 May 9;11:1386161. doi: 10.3389/fmed.2024.1386161. eCollection 2024.
9
Artificial Intelligence in Cardiology and Atherosclerosis in the Context of Precision Medicine: A Scoping Review.
Appl Bionics Biomech. 2024 Apr 30;2024:2991243. doi: 10.1155/2024/2991243. eCollection 2024.

本文引用的文献

1
Integrating Predictive Analytics Into High-Value Care: The Dawn of Precision Delivery.
JAMA. 2016 Feb 16;315(7):651-2. doi: 10.1001/jama.2015.19417.
2
Rapid identification of slow healing wounds.
Wound Repair Regen. 2016 Jan-Feb;24(1):181-8. doi: 10.1111/wrr.12384. Epub 2016 Feb 4.
3
Implications of non-stationarity on predictive modeling using EHRs.
J Biomed Inform. 2015 Dec;58:168-174. doi: 10.1016/j.jbi.2015.10.006. Epub 2015 Oct 20.
4
Coronary artery disease risk assessment from unstructured electronic health records using text mining.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S203-S210. doi: 10.1016/j.jbi.2015.08.003. Epub 2015 Aug 28.
5
A targeted real-time early warning score (TREWScore) for septic shock.
Sci Transl Med. 2015 Aug 5;7(299):299ra122. doi: 10.1126/scitranslmed.aab3719.
7
5 year mortality predictors in 498,103 UK Biobank participants: a prospective population-based study.
Lancet. 2015 Aug 8;386(9993):533-40. doi: 10.1016/S0140-6736(15)60175-1. Epub 2015 Jun 3.
8
Pharmacological treatment and current management of peripheral artery disease.
Circ Res. 2015 Apr 24;116(9):1579-98. doi: 10.1161/CIRCRESAHA.114.303505.
9
Epidemiology of peripheral artery disease.
Circ Res. 2015 Apr 24;116(9):1509-26. doi: 10.1161/CIRCRESAHA.116.303849.
10
Additive clinical value of serum brain-derived neurotrophic factor for prediction of chronic heart failure outcome.
Heart Vessels. 2016 Apr;31(4):535-44. doi: 10.1007/s00380-015-0628-6. Epub 2015 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验