Suppr超能文献

转移学习在癌症药物敏感性预测中的应用。

Application of transfer learning for cancer drug sensitivity prediction.

机构信息

Department of Electrical and Computer Engineering, Texas Tech University, 1012 Boston Ave, Lubbock, 79409, TX, USA.

Department of Mathematics and Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, 79409, TX, USA.

出版信息

BMC Bioinformatics. 2018 Dec 28;19(Suppl 17):497. doi: 10.1186/s12859-018-2465-y.

Abstract

BACKGROUND

In precision medicine, scarcity of suitable biological data often hinders the design of an appropriate predictive model. In this regard, large scale pharmacogenomics studies, like CCLE and GDSC hold the promise to mitigate the issue. However, one cannot directly employ data from multiple sources together due to the existing distribution shift in data. One way to solve this problem is to utilize the transfer learning methodologies tailored to fit in this specific context.

RESULTS

In this paper, we present two novel approaches for incorporating information from a secondary database for improving the prediction in a target database. The first approach is based on latent variable cost optimization and the second approach considers polynomial mapping between the two databases. Utilizing CCLE and GDSC databases, we illustrate that the proposed approaches accomplish a better prediction of drug sensitivities for different scenarios as compared to the existing approaches.

CONCLUSION

We have compared the performance of the proposed predictive models with database-specific individual models as well as existing transfer learning approaches. We note that our proposed approaches exhibit superior performance compared to the abovementioned alternative techniques for predicting sensitivity for different anti-cancer compounds, particularly the nonlinear mapping model shows the best overall performance.

摘要

背景

在精准医学中,合适的生物数据的稀缺常常阻碍了合适的预测模型的设计。在这方面,大规模的药物基因组学研究,如 CCLE 和 GDSC,有望缓解这一问题。然而,由于数据中存在分布偏移,不能直接将来自多个来源的数据一起使用。解决这个问题的一种方法是利用专门针对这种特定情况的迁移学习方法。

结果

在本文中,我们提出了两种新的方法,用于结合来自辅助数据库的信息以提高目标数据库中的预测。第一种方法基于潜在变量成本优化,第二种方法考虑两个数据库之间的多项式映射。利用 CCLE 和 GDSC 数据库,我们表明,与现有方法相比,所提出的方法在不同情况下对药物敏感性的预测更准确。

结论

我们将所提出的预测模型的性能与数据库特定的个体模型以及现有的迁移学习方法进行了比较。我们注意到,与上述替代技术相比,我们提出的方法在预测不同抗癌化合物的敏感性方面表现出更好的性能,特别是非线性映射模型表现出最佳的整体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c86d/6309077/a147b2d1a671/12859_2018_2465_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验