Suppr超能文献

Effect of oxygen free radicals on cardiovascular function at organ and cellular levels.

作者信息

Prasad K, Kalra J, Chan W P, Chaudhary A K

机构信息

Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.

出版信息

Am Heart J. 1989 Jun;117(6):1196-202. doi: 10.1016/0002-8703(89)90396-7.

Abstract

Oxygen free radicals (OFR) have been implicated as a causative factor of cell damage in several pathologic conditions. It is possible that OFR could have effects on cardiac function and contractility. The present investigation deals with the effects of OFR in the absence and in the presence of scavangers of OFR (superoxide dismutase and catalase) on cardiac function, index of cardiac contractility, serum creatine kinase (CK), and blood lactate, PO2 and pH in the anesthetized dogs. The hemodynamic measurements and collection of blood samples for measurement of CK, lactate, PO2 and pH were made before and at various intervals after administration of OFR for 1 hour. Xanthine and xanthine oxidase were used to generate OFR. OFR produced a decrease in cardiac function and indices of myocardial contractility and an increase in the serum CK. OFR produced an increase in the systemic and pulmonary vascular resistance. Although there was a tendency for an increase in the blood lactate, the increase was not significant. The blood PO2 and pH were not affected. Superoxide dismutase (SOD), alone or in combination with catalase, tended to protect cardiac function against the deleterious effects of OFR. Scavangers of OFR prevented the OFR-induced rise in serum CK. Although the protective effect of SOD plus catalase was slightly better than SOD alone, the results were not significantly different from each other. These results suggest that OFR are cardiac depressant and increase the peripheral vascular resistance besides causing cellular damage. Scavangers of OFR may be beneficial in counteracting the deleterious effects of OFR on hemodynamic parameters and cellular integrity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验