Cox Bryan D, Stanton Richard A, Schinazi Raymond F
Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, USA.
Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
Antivir Chem Chemother. 2015 Aug;24(3-4):118-26. doi: 10.1177/2040206616653873. Epub 2016 Jun 13.
Zika virus is an emerging crisis as infection is implicated in severe neurological disorders-Guillain-Barré syndrome and fetal microcephaly. There are currently no treatment options available for Zika virus infection. This virus is part of the flavivirus genus and closely related to Dengue Fever Virus, West Nile Virus, and Japanese Encephalitis Virus. Like other flaviviruses, the Zika virus genome encodes three structural proteins (capsid, precursor membrane, and envelope) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). Currently, no structural information exists on these viral proteins to facilitate vaccine design and rational drug discovery.
Structures for all Zika virus viral proteins were predicted using experimental templates available from closely related viruses using the online SwissModel server. These homology models were compared to drug targets from other viruses using Visual Molecular Dynamics Multiseq software. Sequential alignment of all Zika virus polyproteins was performed using Clustal Omega to identify mutations in specific viral proteins implicated in pathogenesis.
The precursor membrane, envelope, and NS1 proteins are unique to Zika virus highlighting possible challenges in vaccine design. Sequential differences between Zika virus strains occur at critical positions on precursor membrane, envelope, NS2A, NS3, NS4B, and NS5 as potential loci for differential pathogenesis. Druggable pockets in Dengue Fever Virus and West Nile Virus NS3 and NS5 are retained in predicted Zika virus structures.
Lead candidates for Zika virus can likely be established using NS3 and NS5 inhibitors from other flaviviruses, and the structures presented can provide opportunities for Zika virus intervention strategies.
寨卡病毒是一场新出现的危机,因为感染与严重的神经系统疾病——格林-巴利综合征和胎儿小头畸形有关。目前尚无针对寨卡病毒感染的治疗方法。这种病毒属于黄病毒属,与登革热病毒、西尼罗河病毒和日本脑炎病毒密切相关。与其他黄病毒一样,寨卡病毒基因组编码三种结构蛋白(衣壳、前体膜和包膜)和七种非结构蛋白(NS1、NS2A、NS2B、NS3、NS4A、NS4B和NS5)。目前,尚无这些病毒蛋白的结构信息来促进疫苗设计和合理的药物研发。
使用在线SwissModel服务器,利用来自密切相关病毒的实验模板预测所有寨卡病毒病毒蛋白的结构。使用可视化分子动力学多序列软件将这些同源模型与其他病毒的药物靶点进行比较。使用Clustal Omega对所有寨卡病毒多蛋白进行序列比对,以识别与发病机制相关的特定病毒蛋白中的突变。
前体膜、包膜和NS1蛋白是寨卡病毒所特有的,这突出了疫苗设计中可能面临的挑战。寨卡病毒毒株之间的序列差异出现在前体膜、包膜、NS2A、NS3、NS4B和NS5的关键位置,这些位置是不同发病机制的潜在位点。登革热病毒和西尼罗河病毒NS3和NS5中的可成药口袋在预测的寨卡病毒结构中得以保留。
利用其他黄病毒的NS3和NS5抑制剂可能确定寨卡病毒的潜在候选药物,所呈现的结构可为寨卡病毒干预策略提供机会。