Suppr超能文献

基于干细胞的神经组织工程用微流控系统。

Microfluidic systems for stem cell-based neural tissue engineering.

机构信息

Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.

Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran.

出版信息

Lab Chip. 2016 Jul 5;16(14):2551-71. doi: 10.1039/c6lc00489j.

Abstract

Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

摘要

神经组织工程旨在通过为神经细胞的生长和分化提供一个许可的环境,开发治疗神经系统疾病的新方法。三维(3D)细胞培养系统提供了更接近仿生的环境,并促进了更好的细胞分化和改善的细胞功能,这是传统的二维(2D)培养系统无法实现的。随着最近在组织工程中发现和引入不同类型的干细胞的进展,微流控平台为干细胞的 3D 培养提供了一个改进的微环境。与传统系统相比,微流控系统可以在细胞水平上更精确地控制化学和物理线索的时空分布。已经设计和制造了各种微系统,用于神经组织工程。通过应用不同的基于微流控的干细胞培养和组织工程技术,可以增强神经迁移和分化,并监测这些过程,以及了解干细胞及其微环境的行为。随着技术的进步,构建“芯片上的大脑”可能成为可能。在这篇综述中,我们描述了干细胞和组织工程以及基于微流控的组织工程方法的基础知识。我们回顾了最近对各种基于微流控的干细胞神经组织工程方法的测试。

相似文献

7
Microfluidic cell culture models for tissue engineering.微流控细胞培养模型在组织工程中的应用。
Curr Opin Biotechnol. 2011 Oct;22(5):681-9. doi: 10.1016/j.copbio.2011.05.512. Epub 2011 Jun 30.
9
Automated maintenance of embryonic stem cell cultures.胚胎干细胞培养的自动化维护
Biotechnol Bioeng. 2007 Jan 1;96(1):195-201. doi: 10.1002/bit.21061.

引用本文的文献

2
Organs on chips: fundamentals, bioengineering and applications.芯片上的器官:基础、生物工程与应用
J Artif Organs. 2025 Jun;28(2):110-130. doi: 10.1007/s10047-024-01460-0. Epub 2024 Aug 12.
5
Microfluidic Systems for Neural Cell Studies.用于神经细胞研究的微流控系统
Bioengineering (Basel). 2023 Jul 30;10(8):902. doi: 10.3390/bioengineering10080902.
9
Functional bioengineered tissue models of neurodegenerative diseases.神经退行性疾病的功能生物工程组织模型。
Biomaterials. 2023 Jul;298:122143. doi: 10.1016/j.biomaterials.2023.122143. Epub 2023 May 2.
10
Functional bioengineered models of the central nervous system.中枢神经系统的功能性生物工程模型。
Nat Rev Bioeng. 2023;1(4):252-270. doi: 10.1038/s44222-023-00027-7. Epub 2023 Feb 7.

本文引用的文献

2
Albumin nanostructures as advanced drug delivery systems.白蛋白纳米结构作为先进的药物递送系统。
Expert Opin Drug Deliv. 2016 Nov;13(11):1609-1623. doi: 10.1080/17425247.2016.1193149. Epub 2016 Jun 3.
8
Engineering-Aligned 3D Neural Circuit in Microfluidic Device.微流控装置中的工程化 3D 神经电路
Adv Healthc Mater. 2016 Jan 7;5(1):159-66. doi: 10.1002/adhm.201500397. Epub 2015 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验