LEICI Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales, Universidad Nacional de La Plata, CONICET, Argentina.
NeuroInformatics Center, University of Oregon, Eugene, OR, USA.
Neuroimage. 2020 Apr 1;209:116403. doi: 10.1016/j.neuroimage.2019.116403. Epub 2019 Dec 17.
One of the major questions in high-density transcranial electrical stimulation (TES) is: given a region of interest (ROI) and electric current limits for safety, how much current should be delivered by each electrode for optimal targeting of the ROI? Several solutions, apparently unrelated, have been independently proposed depending on how "optimality" is defined and on how this optimization problem is stated mathematically. The least squares (LS), weighted LS (WLS), or reciprocity-based approaches are the simplest ones and have closed-form solutions. An extended optimization problem can be stated as follows: maximize the directional intensity at the ROI, limit the electric fields at the non-ROI, and constrain total injected current and current per electrode for safety. This problem requires iterative convex or linear optimization solvers. We theoretically prove in this work that the LS, WLS and reciprocity-based closed-form solutions are specific solutions to the extended directional maximization optimization problem. Moreover, the LS/WLS and reciprocity-based solutions are the two extreme cases of the intensity-focality trade-off, emerging under variation of a unique parameter of the extended directional maximization problem, the imposed constraint to the electric fields at the non-ROI. We validate and illustrate these findings with simulations on an atlas head model. The unified approach we present here allows a better understanding of the nature of the TES optimization problem and helps in the development of advanced and more effective targeting strategies.
高密度经颅电刺激(TES)中的一个主要问题是:给定感兴趣区域(ROI)和安全电流限制,每个电极应输送多少电流才能最佳靶向 ROI?根据“最优性”的定义以及如何对该优化问题进行数学表述,已经独立提出了几种显然不相关的解决方案。最小二乘法(LS)、加权最小二乘法(WLS)或基于互易性的方法是最简单的方法,具有闭式解。可以将扩展的优化问题表述如下:最大化 ROI 处的指向强度,限制非 ROI 处的电场,并为安全约束总注入电流和每个电极的电流。该问题需要迭代凸优化或线性优化求解器。在这项工作中,我们从理论上证明了 LS、WLS 和基于互易性的闭式解是扩展的定向最大化优化问题的特定解。此外,LS/WLS 和基于互易性的解是强度-聚焦权衡的两个极端情况,这是在扩展的定向最大化问题的唯一参数变化下出现的,该参数对非 ROI 处的电场施加了约束。我们在头模型图谱上的模拟中验证并说明了这些发现。我们在这里提出的统一方法可以帮助更好地理解 TES 优化问题的本质,并有助于开发更先进、更有效的靶向策略。