Suppr超能文献

低于衍射极限的传统荧光显微镜技术,可在DNA折纸结构中同时捕获两种荧光团。

Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami.

作者信息

Glasgow Ben J

机构信息

Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095.

出版信息

Proc SPIE Int Soc Opt Eng. 2016 Feb;9714. doi: 10.1117/12.2211074. Epub 2016 Mar 1.

Abstract

A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain subdiffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules.

摘要

先前构建了一台传统荧光显微镜,用于同时进行双色成像以实现亚衍射定位。该系统基于重叠艾里斑的颜色分离,构建笛卡尔坐标矩阵以确定荧光团的点扩散函数的位置及其中心。在x-y坐标中分辨出了间距仅为10 nm的量子点。荧光团间相差10 nm的距离也能够被区分。量子点是明亮的点光源发射体,用单一激光激发,可作为许多生物分子的标记。在此,描述了方法上的改变,以测试分辨附着在DNA折纸结构上、间距约为40 nm的Atto 488和Atto 647染料的能力。双激光激发与多波长带通滤光片串联使用。尽管与量子点相比,Atto标记的DNA折纸螺旋束强度降低带来了挑战,但初步数据显示荧光团间平均距离为56 nm,范围为(14 - 148 nm)。该范围与其他亚衍射显微镜方法对DNA折纸结构的已发表结果紧密匹配。亚衍射同步双色成像荧光显微镜(简称为SSTIFM)是一种简单、易于使用的技术,用于测量小于40 nm间隔内的荧光团间距离。使用所谓的纳米尺得到的初步结果对于与其他生物分子一起使用来说很有前景。

相似文献

7
Optical and Topological Characterization of Hexagonal DNA Origami Nanotags.六方 DNA 折纸纳米标签的光学和拓扑特征。
IEEE Trans Nanobioscience. 2021 Oct;20(4):516-520. doi: 10.1109/TNB.2021.3095157. Epub 2021 Sep 30.
8
Scanning Switch-off Microscopy for Super-Resolution Fluorescence Imaging.扫描关闭显微镜用于超分辨率荧光成像。
Nano Lett. 2024 Oct 2;24(39):12125-12132. doi: 10.1021/acs.nanolett.4c02452. Epub 2024 Sep 19.
10
Fluorescence microscopy with 6 nm resolution on DNA origami.对DNA折纸进行分辨率为6纳米的荧光显微镜检查。
Chemphyschem. 2014 Aug 25;15(12):2431-5. doi: 10.1002/cphc.201402179. Epub 2014 Jun 4.

本文引用的文献

9
A guide to super-resolution fluorescence microscopy.超分辨率荧光显微镜指南。
J Cell Biol. 2010 Jul 26;190(2):165-75. doi: 10.1083/jcb.201002018. Epub 2010 Jul 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验