Suppr超能文献

使用光子积累增强重建(PACER)对荧光团之间小于10纳米的距离进行测量。

Sub-10-nm distance measurements between fluorophores using photon-accumulation enhanced reconstruction (PACER).

作者信息

Dong Biqin, Song Ki-Hee, Davis Janel L, Zhang Hao F, Sun Cheng

机构信息

Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA.

Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA.

出版信息

Adv Photonics Res. 2020 Dec;1(2). doi: 10.1002/adpr.202000038. Epub 2020 Oct 14.

Abstract

Single-molecule localization microscopy (SMLM) precisely localizes individual fluorescent molecules within the wide field of view. However, the localization precision is fundamentally limited to around 20 nm due to the physical photon limit of individual stochastic single-molecule emissions. Using spectroscopic SMLM (sSMLM) to resolve their distinct fluorescence emission spectra, we can specifically distinguish and identify individual fluorophore, even the ones of the same type. Consequently, the reported photon-accumulation enhanced reconstruction (PACER) method accumulates photons over repeated stochastic emissions from the same fluorophore to significantly improve the localization precision. This work showed the feasibility of PACER by resolving quantum dots that were 6.1 nm apart with 1.7-nm localization precision. Next, a Monte Carlo simulation is used to investigate the success probability of PACER's classification process for distance measurements under different conditions. Finally, PACER is used to resolve and measure the lengths of DNA origami nanorulers with inter-molecular spacing as small as 6 nm. Notably, the demonstrated sub-2-nm localization precision bridges the detection range between Förster Resonance Energy Transfer (FRET) and conventional SMLM. Fully exploiting the underlying imaging capability can potentially enable high-throughput inter-molecular distance measurements over a large field of view.

摘要

单分子定位显微镜(SMLM)可在宽视场范围内精确地定位单个荧光分子。然而,由于单个随机单分子发射的物理光子限制,定位精度从根本上被限制在约20纳米左右。通过使用光谱SMLM(sSMLM)来解析其独特的荧光发射光谱,我们能够特异性地区分和识别单个荧光团,即使是相同类型的荧光团。因此,所报道的光子积累增强重建(PACER)方法通过在来自同一荧光团的重复随机发射过程中积累光子,显著提高了定位精度。这项工作通过以1.7纳米的定位精度分辨相距6.1纳米的量子点,展示了PACER的可行性。接下来,使用蒙特卡罗模拟来研究PACER在不同条件下进行距离测量的分类过程的成功概率。最后,使用PACER来分辨和测量分子间间距小至6纳米的DNA折纸纳米尺的长度。值得注意的是,所展示的亚2纳米定位精度弥合了荧光共振能量转移(FRET)与传统SMLM之间的检测范围。充分利用潜在的成像能力可能实现大视场范围内的高通量分子间距离测量。

相似文献

7
Symmetrically dispersed spectroscopic single-molecule localization microscopy.对称分散光谱单分子定位显微镜术
Light Sci Appl. 2020 May 25;9:92. doi: 10.1038/s41377-020-0333-9. eCollection 2020.

引用本文的文献

本文引用的文献

4
MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution.MINFLUX 以卓越的时空分辨率监测快速分子跳跃。
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6117-6122. doi: 10.1073/pnas.1801672115. Epub 2018 May 29.
10
Fluorescence microscopy with 6 nm resolution on DNA origami.对DNA折纸进行分辨率为6纳米的荧光显微镜检查。
Chemphyschem. 2014 Aug 25;15(12):2431-5. doi: 10.1002/cphc.201402179. Epub 2014 Jun 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验