Suppr超能文献

猴子同时性间隔计时的两阶段模型。

A two-stage model of concurrent interval timing in monkeys.

作者信息

Kleinman Matthew R, Sohn Hansem, Lee Daeyeol

机构信息

Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut;

Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts;

出版信息

J Neurophysiol. 2016 Sep 1;116(3):1068-81. doi: 10.1152/jn.00375.2016. Epub 2016 Jun 22.

Abstract

Accurate timing is critical for a wide range of cognitive processes and behaviors. In addition, complex environments frequently necessitate the simultaneous timing of multiple intervals, and behavioral performance in concurrent timing can constrain formal models of timing behavior and provide important insights into the corresponding neural mechanisms. However, the accuracy of such concurrent timing has not been rigorously examined. We developed a novel behavioral paradigm in which rhesus monkeys were incentivized to time two independent intervals. The onset asynchrony of two overlapping intervals varied randomly, thereby discouraging the animals from adopting any habitual responses. We found that only the first response for each interval was strongly indicative of the internal timing of that interval, consistent with previous findings and a two-stage model. In addition, the temporal precision of the first response was comparable in the single-interval and concurrent-interval conditions, although the first saccade to the second interval tended to occur sooner than in the single-interval condition. Finally, behavioral responses during concurrent timing could be well accounted for by a race between two independent stochastic processes resembling those in the single-interval condition. The fact that monkeys can simultaneously monitor and respond to multiple temporal intervals indicates that the neural mechanisms for interval timing must be sufficiently flexible for concurrent timing.

摘要

精确计时对于广泛的认知过程和行为至关重要。此外,复杂环境常常需要同时对多个时间间隔进行计时,而同时计时任务中的行为表现能够限制计时行为的形式模型,并为相应的神经机制提供重要见解。然而,这种同时计时的准确性尚未得到严格检验。我们开发了一种新颖的行为范式,其中恒河猴被激励去对两个独立的时间间隔进行计时。两个重叠时间间隔的起始异步随机变化,从而抑制动物采用任何习惯性反应。我们发现,每个时间间隔的首次反应才强烈指示该时间间隔的内部计时,这与先前的研究结果和一个两阶段模型一致。此外,尽管对第二个时间间隔的首次扫视往往比单时间间隔条件下更早发生,但首次反应的时间精度在单时间间隔和同时时间间隔条件下相当。最后,同时计时期间的行为反应可以通过类似于单时间间隔条件下的两个独立随机过程之间的竞争来很好地解释。猴子能够同时监测并对多个时间间隔做出反应,这一事实表明,时间间隔计时的神经机制对于同时计时必须足够灵活。

相似文献

1
A two-stage model of concurrent interval timing in monkeys.
J Neurophysiol. 2016 Sep 1;116(3):1068-81. doi: 10.1152/jn.00375.2016. Epub 2016 Jun 22.
2
Cancelling of pursuit and saccadic eye movements in humans and monkeys.
J Neurophysiol. 2003 Jun;89(6):2984-99. doi: 10.1152/jn.00859.2002.
3
An internal clock generates repetitive predictive saccades.
Exp Brain Res. 2006 Nov;175(2):305-20. doi: 10.1007/s00221-006-0554-z. Epub 2006 Sep 9.
4
Multiple timing of nested intervals: Further evidence for a weighted sum of segments account.
Psychon Bull Rev. 2016 Feb;23(1):317-23. doi: 10.3758/s13423-015-0877-5.
5
Influence of previous visual stimulus or saccade on saccadic reaction times in monkey.
J Neurophysiol. 1999 May;81(5):2429-36. doi: 10.1152/jn.1999.81.5.2429.
6
Linking visual response properties in the superior colliculus to saccade behavior.
Eur J Neurosci. 2012 Jun;35(11):1738-52. doi: 10.1111/j.1460-9568.2012.08079.x. Epub 2012 May 28.
8
Interval timing by an invertebrate, the bumble bee Bombus impatiens.
Curr Biol. 2006 Aug 22;16(16):1636-40. doi: 10.1016/j.cub.2006.06.064.
9
Facilitation of temporal prediction by electrical stimulation to the primate cerebellar nuclei.
Neuroscience. 2017 Mar 27;346:190-196. doi: 10.1016/j.neuroscience.2017.01.023. Epub 2017 Jan 25.
10
Visual and saccade-related activity in macaque posterior cingulate cortex.
J Neurophysiol. 2004 Nov;92(5):3056-68. doi: 10.1152/jn.00691.2003. Epub 2004 Jun 16.

引用本文的文献

1
C-SMB 2.0: Integrating over 25 years of motor sequencing research with the Discrete Sequence Production task.
Psychon Bull Rev. 2024 Jun;31(3):931-978. doi: 10.3758/s13423-023-02377-0. Epub 2023 Oct 17.
2
Drift-diffusion explains response variability and capacity for tracking objects.
Sci Rep. 2019 Aug 2;9(1):11224. doi: 10.1038/s41598-019-47624-4.
3
Short-term memory for spatial, sequential and duration information.
Curr Opin Behav Sci. 2017 Oct;17:20-26. doi: 10.1016/j.cobeha.2017.05.023.
4
Preparation of timing structure involves two independent sub-processes.
Psychol Res. 2018 Sep;82(5):981-996. doi: 10.1007/s00426-017-0877-3. Epub 2017 May 31.
5
Working Memory for Sequences of Temporal Durations Reveals a Volatile Single-Item Store.
Front Psychol. 2016 Oct 26;7:1655. doi: 10.3389/fpsyg.2016.01655. eCollection 2016.

本文引用的文献

1
A scalable population code for time in the striatum.
Curr Biol. 2015 May 4;25(9):1113-22. doi: 10.1016/j.cub.2015.02.036. Epub 2015 Apr 23.
2
Dissociating movement from movement timing in the rat primary motor cortex.
J Neurosci. 2014 Nov 19;34(47):15576-86. doi: 10.1523/JNEUROSCI.1816-14.2014.
5
Properties of the internal clock: first- and second-order principles of subjective time.
Annu Rev Psychol. 2014;65:743-71. doi: 10.1146/annurev-psych-010213-115117. Epub 2013 Sep 11.
6
Neural correlates of interval timing in rodent prefrontal cortex.
J Neurosci. 2013 Aug 21;33(34):13834-47. doi: 10.1523/JNEUROSCI.1443-13.2013.
7
Neural basis of the perception and estimation of time.
Annu Rev Neurosci. 2013 Jul 8;36:313-36. doi: 10.1146/annurev-neuro-062012-170349. Epub 2013 May 29.
8
Interval tuning in the primate medial premotor cortex as a general timing mechanism.
J Neurosci. 2013 May 22;33(21):9082-96. doi: 10.1523/JNEUROSCI.5513-12.2013.
10
Measuring time with different neural chronometers during a synchronization-continuation task.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19784-9. doi: 10.1073/pnas.1112933108. Epub 2011 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验