Suppr超能文献

用 DNA 折纸纳米卡尺探测核小体稳定性。

Probing Nucleosome Stability with a DNA Origami Nanocaliper.

机构信息

Biophysics Graduate Program, ‡Department of Physics, and §Department of Mechanical and Aerospace Engineering, The Ohio State University , Columbus, Ohio 43214, United States.

出版信息

ACS Nano. 2016 Jul 26;10(7):7073-84. doi: 10.1021/acsnano.6b03218. Epub 2016 Jul 6.

Abstract

The organization of eukaryotic DNA into nucleosomes and chromatin undergoes dynamic structural changes to regulate genome processing, including transcription and DNA repair. Critical chromatin rearrangements occur over a wide range of distances, including the mesoscopic length scale of tens of nanometers. However, there is a lack of methodologies that probe changes over this mesoscopic length scale within chromatin. We have designed, constructed, and implemented a DNA-based nanocaliper that probes this mesoscopic length scale. We developed an approach of integrating nucleosomes into our nanocaliper at two attachment points with over 50% efficiency. Here, we focused on attaching the two DNA ends of the nucleosome to the ends of the two nanocaliper arms, so the hinge angle is a readout of the nucleosome end-to-end distance. We demonstrate that nucleosomes integrated with 6, 26, and 51 bp linker DNA are partially unwrapped by the nanocaliper by an amount consistent with previously observed structural transitions. In contrast, the nucleosomes integrated with the longer 75 bp linker DNA remain fully wrapped. We found that the nanocaliper angle is a sensitive measure of nucleosome disassembly and can read out transcription factor (TF) binding to its target site within the nucleosome. Interestingly, the nanocaliper not only detects TF binding but also significantly increases the probability of TF occupancy at its site by partially unwrapping the nucleosome. These studies demonstrate the feasibility of using DNA nanotechnology to both detect and manipulate nucleosome structure, which provides a foundation of future mesoscale studies of nucleosome and chromatin structural dynamics.

摘要

真核生物 DNA 组织成核小体和染色质,经历动态结构变化以调节基因组处理,包括转录和 DNA 修复。关键的染色质重排发生在广泛的距离范围内,包括数十纳米的介观长度尺度。然而,缺乏探测染色质中这个介观长度尺度上变化的方法。我们设计、构建和实施了一种基于 DNA 的纳米卡尺,用于探测这个介观长度尺度。我们开发了一种将核小体整合到纳米卡尺中的方法,在两个附着点的效率超过 50%。在这里,我们专注于将核小体的两个 DNA 末端附着到纳米卡尺臂的末端,因此铰链角度是核小体末端到末端距离的读数。我们证明,用 6、26 和 51 bp 连接 DNA 整合的核小体被纳米卡尺部分解开,解开的程度与先前观察到的结构转变一致。相比之下,用较长的 75 bp 连接 DNA 整合的核小体仍然完全包裹。我们发现纳米卡尺角度是核小体解组装的敏感测量指标,可以读取转录因子 (TF) 在核小体中与其靶位点的结合。有趣的是,纳米卡尺不仅检测 TF 结合,而且通过部分解开核小体,显著增加 TF 占据其位点的概率。这些研究证明了使用 DNA 纳米技术来检测和操纵核小体结构的可行性,为未来核小体和染色质结构动力学的介观研究提供了基础。

相似文献

1
Probing Nucleosome Stability with a DNA Origami Nanocaliper.用 DNA 折纸纳米卡尺探测核小体稳定性。
ACS Nano. 2016 Jul 26;10(7):7073-84. doi: 10.1021/acsnano.6b03218. Epub 2016 Jul 6.
2
Quantitative Modeling of Nucleosome Unwrapping from Both Ends.从两端定量建模核小体解缠绕。
Biophys J. 2019 Dec 3;117(11):2204-2216. doi: 10.1016/j.bpj.2019.09.048. Epub 2019 Oct 30.
4
Ubiquitous nucleosome crowding in the yeast genome.酵母基因组中普遍存在核小体拥挤现象。
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5236-41. doi: 10.1073/pnas.1321001111. Epub 2014 Mar 24.
7
Taking into account nucleosomes for predicting gene expression.考虑核小体以预测基因表达。
Methods. 2013 Jul 15;62(1):26-38. doi: 10.1016/j.ymeth.2013.03.011. Epub 2013 Mar 21.
8
Uncovering the forces between nucleosomes using DNA origami.利用 DNA 折纸术揭示核小体之间的相互作用力。
Sci Adv. 2016 Nov 23;2(11):e1600974. doi: 10.1126/sciadv.1600974. eCollection 2016 Nov.
9
Biophysics of Chromatin Dynamics.染色质动力学的生物物理学。
Annu Rev Biophys. 2019 May 6;48:321-345. doi: 10.1146/annurev-biophys-070317-032847. Epub 2019 Mar 18.
10
Epigenome Regulation by Dynamic Nucleosome Unwrapping.动态核小体解缠绕调控表观基因组
Trends Biochem Sci. 2020 Jan;45(1):13-26. doi: 10.1016/j.tibs.2019.09.003. Epub 2019 Oct 17.

引用本文的文献

8
Cooperative control of a DNA origami force sensor.DNA折纸力传感器的协同控制
Sci Rep. 2024 Feb 19;14(1):4132. doi: 10.1038/s41598-024-53841-3.
10
DNA origami: a tool to evaluate and harness transcription factors.DNA 折纸术:评估和利用转录因子的工具。
J Mol Med (Berl). 2023 Dec;101(12):1493-1498. doi: 10.1007/s00109-023-02380-x. Epub 2023 Oct 9.

本文引用的文献

1
Maintenance of Epigenetic Information.表观遗传信息的维持。
Cold Spring Harb Perspect Biol. 2016 May 2;8(5):a019372. doi: 10.1101/cshperspect.a019372.
4
Single-Molecule Visualization of the Activity of a Zn(2+)-Dependent DNAzyme.单分子可视化研究 Zn(2+)-依赖型 DNA 酶的活性。
Angew Chem Int Ed Engl. 2015 Sep 1;54(36):10550-4. doi: 10.1002/anie.201504656. Epub 2015 Jul 17.
6
A brief review of nucleosome structure.核小体结构简述。
FEBS Lett. 2015 Oct 7;589(20 Pt A):2914-22. doi: 10.1016/j.febslet.2015.05.016. Epub 2015 May 14.
9
Programmable motion of DNA origami mechanisms.DNA折纸机制的可编程运动。
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):713-8. doi: 10.1073/pnas.1408869112. Epub 2015 Jan 5.
10
Facile and scalable preparation of pure and dense DNA origami solutions.简便且可扩展地制备纯净且致密的DNA折纸溶液。
Angew Chem Int Ed Engl. 2014 Nov 17;53(47):12735-40. doi: 10.1002/anie.201405991. Epub 2014 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验