Jeantet A, Chassagneux Y, Raynaud C, Roussignol Ph, Lauret J S, Besga B, Estève J, Reichel J, Voisin C
Laboratoire Pierre Aigrain, École Normale Supérieure, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, 24, rue Lhomond, F-75005 Paris, France.
Laboratoire Aimé Cotton, CNRS, École Normale Supérieure de Cachan, Universite Paris Sud, 91405 Orsay, France.
Phys Rev Lett. 2016 Jun 17;116(24):247402. doi: 10.1103/PhysRevLett.116.247402.
The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong emission enhancement corresponding to a Purcell factor of up to 5. At the same time, the emitted photons retain a strong sub-Poissonian statistics. By exploiting the cavity feeding effect on the phonon wings, we locked the emission of the nanotube at the cavity resonance frequency, which allowed us to tune the frequency over a 4 THz band while keeping an almost perfect antibunching. By choosing the nanotube diameter appropriately, this study paves the way to the development of carbon-based tunable single-photon sources in the telecom bands.
利用这种灵活几何结构带来的内置空间和光谱匹配,将单个碳纳米管在低温下的窄发射与光纤微腔的光学模式耦合。对同一发射体在自由空间和腔内进行的全面连续波和时间分辨研究表明,发射有效地汇聚到腔模中,同时发射显著增强,对应的珀塞尔因子高达5。与此同时,发射的光子保持强烈的亚泊松统计特性。通过利用腔对声子边带的馈送效应,我们将纳米管的发射锁定在腔共振频率,这使我们能够在4太赫兹频段内调谐频率,同时保持几乎完美的反聚束。通过适当选择纳米管直径,本研究为在电信频段开发基于碳的可调谐单光子源铺平了道路。