Pena Michelle J, Heinzel Andreas, Rossing Peter, Parving Hans-Henrik, Dallmann Guido, Rossing Kasper, Andersen Steen, Mayer Bernd, Heerspink Hiddo J L
Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, P. O. Box 30.001, 9700RB, Groningen, The Netherlands.
emergentec biodevelopment GmbH, Vienna, Austria.
J Transl Med. 2016 Jul 5;14(1):203. doi: 10.1186/s12967-016-0960-3.
Individual patients show a large variability in albuminuria response to angiotensin receptor blockers (ARB). Identifying novel biomarkers that predict ARB response may help tailor therapy. We aimed to discover and validate a serum metabolite classifier that predicts albuminuria response to ARBs in patients with diabetes mellitus and micro- or macroalbuminuria.
Liquid chromatography-tandem mass spectrometry metabolomics was performed on serum samples. Data from patients with type 2 diabetes and microalbuminuria (n = 49) treated with irbesartan 300 mg/day were used for discovery. LASSO and ridge regression were performed to develop the classifier. Improvement in albuminuria response prediction was assessed by calculating differences in R(2) between a reference model of clinical parameters and a model with clinical parameters and the classifier. The classifier was externally validated in patients with type 1 diabetes and macroalbuminuria (n = 50) treated with losartan 100 mg/day. Molecular process analysis was performed to link metabolites to molecular mechanisms contributing to ARB response.
In discovery, median change in urinary albumin excretion (UAE) was -42 % [Q1-Q3: -69 to -8]. The classifier, consisting of 21 metabolites, was significantly associated with UAE response to irbesartan (p < 0.001) and improved prediction of UAE response on top of the clinical reference model (R(2) increase from 0.10 to 0.70; p < 0.001). In external validation, median change in UAE was -43 % [Q1-Q35: -63 to -23]. The classifier improved prediction of UAE response to losartan (R(2) increase from 0.20 to 0.59; p < 0.001). Specifically ADMA impacting eNOS activity appears to be a relevant factor in ARB response.
A serum metabolite classifier was discovered and externally validated to significantly improve prediction of albuminuria response to ARBs in diabetes mellitus.
个体患者对血管紧张素受体阻滞剂(ARB)的蛋白尿反应存在很大差异。识别预测ARB反应的新型生物标志物可能有助于调整治疗方案。我们旨在发现并验证一种血清代谢物分类器,该分类器可预测糖尿病合并微量或大量蛋白尿患者对ARB的蛋白尿反应。
对血清样本进行液相色谱-串联质谱代谢组学分析。使用接受每日300mg厄贝沙坦治疗的2型糖尿病合并微量蛋白尿患者(n = 49)的数据进行发现研究。进行套索回归和岭回归以开发分类器。通过计算临床参数参考模型与包含临床参数和分类器的模型之间的R²差异,评估蛋白尿反应预测的改善情况。该分类器在接受每日100mg氯沙坦治疗的1型糖尿病合并大量蛋白尿患者(n = 50)中进行外部验证。进行分子过程分析以将代谢物与导致ARB反应的分子机制联系起来。
在发现研究中,尿白蛋白排泄量(UAE)的中位数变化为-42%[四分位间距:-69%至-8%]。由21种代谢物组成的分类器与对厄贝沙坦的UAE反应显著相关(p < 0.001),并在临床参考模型之上改善了对UAE反应的预测(R²从0.10增加到0.70;p < 0.001)。在外部验证中,UAE的中位数变化为-43%[四分位间距:-63%至-23%]。该分类器改善了对氯沙坦的UAE反应预测(R²从0.20增加到0.59;p < 0.001)。具体而言,影响内皮型一氧化氮合酶(eNOS)活性的不对称二甲基精氨酸(ADMA)似乎是ARB反应中的一个相关因素。
发现并外部验证了一种血清代谢物分类器,可显著改善糖尿病患者对ARB的蛋白尿反应预测。