Suppr超能文献

静息静脉血容量分数对动态因果建模和系统可识别性的影响。

Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability.

机构信息

Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou 310023, China.

Bioinformatics research center, Department of bioinformatics and genomics, College of Computing and Informatics, University if North Carolina at Charoltte, NC 28223, USA.

出版信息

Sci Rep. 2016 Jul 8;6:29426. doi: 10.1038/srep29426.

Abstract

Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity.

摘要

BOLD 信号的变化对与脉管系统相关的局部血液含量很敏感,在血流动力学模型中称为 V0。在涉及动态因果建模(DCM)的先前研究中,DCM 将血流动力学模型体现为将功能磁共振成像信号反转成神经元活动,V0 被任意设置为生理上合理的值,以克服反问题的不适定性。研究 V0 值如何影响 DCM 是很有趣的。在这项研究中,我们使用合成和真实实验来解决这个问题。结果表明,DCM 分析揭示大脑因果关系信息的能力取决于分析过程中使用的假设 V0 值。V0 值的选择不仅直接影响系统连接的强度,而且更重要的是还影响关于网络结构的推断。我们的分析表明,血流动力学过程的参数化(即,使 V0 成为自由参数)可能需要进一步改进;然而,更复杂模型引起的条件依赖性可能会带来更多问题而不是解决问题。在 DCM 中获得更现实的 V0 信息可以提高系统的可识别性,并提供关于大脑连接属性的更可靠推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e331/4937422/a26d2af59ad7/srep29426-f1.jpg

相似文献

2
Nonlinear estimation of BOLD signals with the aid of cerebral blood volume imaging.
Biomed Eng Online. 2016 Feb 20;15:22. doi: 10.1186/s12938-016-0137-6.
3
Comparing dynamic causal models.
Neuroimage. 2004 Jul;22(3):1157-72. doi: 10.1016/j.neuroimage.2004.03.026.
4
Brain organization into resting state networks emerges at criticality on a model of the human connectome.
Phys Rev Lett. 2013 Apr 26;110(17):178101. doi: 10.1103/PhysRevLett.110.178101. Epub 2013 Apr 22.
5
Dynamic Causal Modelling and physiological confounds: a functional MRI study of vagus nerve stimulation.
Neuroimage. 2010 Oct 1;52(4):1456-64. doi: 10.1016/j.neuroimage.2010.05.021. Epub 2010 May 21.
6
A Unified Estimation Framework for State-Related Changes in Effective Brain Connectivity.
IEEE Trans Biomed Eng. 2017 Apr;64(4):844-858. doi: 10.1109/TBME.2016.2580738. Epub 2016 Jun 14.
7
A dynamic causal modeling study on category effects: bottom-up or top-down mediation?
J Cogn Neurosci. 2003 Oct 1;15(7):925-34. doi: 10.1162/089892903770007317.
8
Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation.
Neuroimage Clin. 2015 Jun 28;8:572-82. doi: 10.1016/j.nicl.2015.06.006. eCollection 2015.
9
Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task.
Neuroimage. 2016 Jan 1;124(Pt A):498-508. doi: 10.1016/j.neuroimage.2015.08.052. Epub 2015 Aug 31.
10
Identifying and characterizing resting state networks in temporally dynamic functional connectomes.
Brain Topogr. 2014 Nov;27(6):747-65. doi: 10.1007/s10548-014-0357-7. Epub 2014 Jun 6.

本文引用的文献

1
Nonlinear estimation of BOLD signals with the aid of cerebral blood volume imaging.
Biomed Eng Online. 2016 Feb 20;15:22. doi: 10.1186/s12938-016-0137-6.
2
Vascular autorescaling of fMRI (VasA fMRI) improves sensitivity of population studies: A pilot study.
Neuroimage. 2016 Jan 1;124(Pt A):794-805. doi: 10.1016/j.neuroimage.2015.09.033. Epub 2015 Sep 28.
3
Concurrent bias correction in hemodynamic data assimilation.
Med Image Anal. 2012 Oct;16(7):1456-64. doi: 10.1016/j.media.2012.05.006. Epub 2012 May 23.
4
Quantitative evaluation of activation state in functional brain imaging.
Brain Topogr. 2012 Oct;25(4):362-73. doi: 10.1007/s10548-012-0230-5. Epub 2012 May 9.
5
Dynamic models of BOLD contrast.
Neuroimage. 2012 Aug 15;62(2):953-61. doi: 10.1016/j.neuroimage.2012.01.012. Epub 2012 Jan 8.
6
Critical comments on dynamic causal modelling.
Neuroimage. 2012 Feb 1;59(3):2322-9. doi: 10.1016/j.neuroimage.2011.09.025. Epub 2011 Sep 22.
7
Comparing dynamic causal models using AIC, BIC and free energy.
Neuroimage. 2012 Jan 2;59(1):319-30. doi: 10.1016/j.neuroimage.2011.07.039. Epub 2011 Jul 27.
8
Effective connectivity: influence, causality and biophysical modeling.
Neuroimage. 2011 Sep 15;58(2):339-61. doi: 10.1016/j.neuroimage.2011.03.058. Epub 2011 Apr 6.
9
Generalised filtering and stochastic DCM for fMRI.
Neuroimage. 2011 Sep 15;58(2):442-57. doi: 10.1016/j.neuroimage.2011.01.085. Epub 2011 Feb 17.
10
Network discovery with DCM.
Neuroimage. 2011 Jun 1;56(3):1202-21. doi: 10.1016/j.neuroimage.2010.12.039. Epub 2010 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验