Samdin S Balqis, Ting Chee-Ming, Ombao Hernando, Salleh Sh-Hussain
IEEE Trans Biomed Eng. 2017 Apr;64(4):844-858. doi: 10.1109/TBME.2016.2580738. Epub 2016 Jun 14.
This paper addresses the critical problem of estimating time-evolving effective brain connectivity. Current approaches based on sliding window analysis or time-varying coefficient models do not simultaneously capture both slow and abrupt changes in causal interactions between different brain regions.
To overcome these limitations, we develop a unified framework based on a switching vector autoregressive (SVAR) model. Here, the dynamic connectivity regimes are uniquely characterized by distinct vector autoregressive (VAR) processes and allowed to switch between quasi-stationary brain states. The state evolution and the associated directed dependencies are defined by a Markov process and the SVAR parameters. We develop a three-stage estimation algorithm for the SVAR model: 1) feature extraction using time-varying VAR (TV-VAR) coefficients, 2) preliminary regime identification via clustering of the TV-VAR coefficients, 3) refined regime segmentation by Kalman smoothing and parameter estimation via expectation-maximization algorithm under a state-space formulation, using initial estimates from the previous two stages.
The proposed framework is adaptive to state-related changes and gives reliable estimates of effective connectivity. Simulation results show that our method provides accurate regime change-point detection and connectivity estimates. In real applications to brain signals, the approach was able to capture directed connectivity state changes in functional magnetic resonance imaging data linked with changes in stimulus conditions, and in epileptic electroencephalograms, differentiating ictal from nonictal periods.
The proposed framework accurately identifies state-dependent changes in brain network and provides estimates of connectivity strength and directionality.
The proposed approach is useful in neuroscience studies that investigate the dynamics of underlying brain states.
本文探讨估计随时间变化的有效脑连接性这一关键问题。当前基于滑动窗口分析或时变系数模型的方法无法同时捕捉不同脑区之间因果相互作用的缓慢变化和突然变化。
为克服这些局限性,我们基于切换向量自回归(SVAR)模型开发了一个统一框架。在此,动态连接状态由不同的向量自回归(VAR)过程唯一表征,并允许在准静态脑状态之间切换。状态演变和相关的直接依赖性由马尔可夫过程和SVAR参数定义。我们为SVAR模型开发了一种三阶段估计算法:1)使用时变VAR(TV-VAR)系数进行特征提取,2)通过对TV-VAR系数进行聚类进行初步状态识别,3)在状态空间公式下,使用前两个阶段的初始估计,通过卡尔曼平滑和期望最大化算法进行参数估计,从而进行精细的状态分割。
所提出的框架能适应与状态相关的变化,并给出有效连接性的可靠估计。仿真结果表明,我们的方法能提供准确的状态变化点检测和连接性估计。在脑信号的实际应用中,该方法能够捕捉与刺激条件变化相关的功能磁共振成像数据中的直接连接状态变化,以及在癫痫脑电图中区分发作期和非发作期。
所提出的框架能准确识别脑网络中与状态相关的变化,并提供连接强度和方向性的估计。
所提出的方法在研究潜在脑状态动态的神经科学研究中很有用。