Department of Psychiatry and Neuroscience, Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
Departments of Pediatrics and Genetics, Stanford University, 269 Campus Drive, CCSR 2110, Stanford, CA, 94305-5164, USA.
Acta Neuropathol Commun. 2016 Jul 11;4(1):70. doi: 10.1186/s40478-016-0340-5.
Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases.
肌萎缩侧索硬化症(ALS)是成人中最常见的运动神经元疾病。经典的 ALS 特征是上下运动神经元的死亡,导致进行性瘫痪。大约 10%的 ALS 患者具有家族性疾病形式。在家族性 ALS 病例中已经发现了许多不同的基因突变,例如超氧化物歧化酶 1(SOD1)、TAR DNA 结合蛋白 43(TDP-43)、肉瘤融合(FUS)、C9ORF72、泛素结合酶 2(UBQLN2)、视神经萎缩蛋白(OPTN)等基因突变。已经产生了多种动物模型来模拟疾病并测试未来的治疗方法。然而,没有一种动物模型完全复制了人类疾病的表型谱,并且很难评估疾病模型中的治疗效果如何预测人类的疗效。重要的是,ALS 的遗传和表型异质性导致对类似治疗方案的各种反应。由此产生了个性化医学(PM)的概念,这是一种将遗传、环境和临床诊断测试(包括生物标志物)结合起来,对个体化患者进行护理的医疗方案。从这个角度出发,我们使用特定的 ALS 相关基因突变亚组来研究现有的动物模型,并提供疾病动物模型与人类疾病之间差异和相似性的综合概况。最后,我们回顾了与个性化医学方法相关的生物标志物和基因治疗的应用。例如,这包括在 SOD1、TDP-43 和 C9orf72 小鼠模型中使用病毒传递反义寡核苷酸和小干扰 RNA。有前途的基因治疗为治疗家族性 ALS 病例中的主要突变提供了不同的可能性。