Suppr超能文献

肌钙蛋白结构:通过分子动力学模拟研究其受Ca(2+)和磷酸化的调节

Troponin structure: its modulation by Ca(2+) and phosphorylation studied by molecular dynamics simulations.

作者信息

Zamora Juan Eiros, Papadaki Maria, Messer Andrew E, Marston Steven B, Gould Ian R

机构信息

Department of Chemistry, Institute of Chemical Biology, Imperial College London, SW7 2AZ, UK.

National Heart & Lung Institute, Myocardial Function Section, Imperial College London, W12 0NN, UK.

出版信息

Phys Chem Chem Phys. 2016 Jul 27;18(30):20691-707. doi: 10.1039/c6cp02610a.

Abstract

The only available crystal structure of the human cardiac troponin molecule (cTn) in the Ca(2+) activated state does not include crucial segments, including the N-terminus of the cTn inhibitory subunit (cTnI). We have applied all-atom molecular dynamics (MD) simulations to study the structure and dynamics of cTn, both in the unphosphorylated and bis-phosphorylated states at Ser23/Ser24 of cTnI. We performed multiple microsecond MD simulations of wild type (WT) cTn (6, 5 μs) and bisphosphorylated (SP23/SP24) cTn (9 μs) on a 419 amino acid cTn model containing human sequence cTnC (1-161), cTnI (1-171) and cTnT (212-298), including residues not present in the crystal structure. We have compared our results to previous computational studies, and proven that longer simulations and a water box of at least 25 Å are needed to sample the interesting conformational shifts both in the native and bis-phosphorylated states. As a consequence of the introduction into the model of the C-terminus of cTnT that was missing in previous studies, cTnC-cTnI interactions that are responsible for the cTn dynamics are altered. We have also shown that phosphorylation does not increase cTn fluctuations, and its effects on the protein-protein interaction profiles cannot be assessed in a significant way. Finally, we propose that phosphorylation could provoke a loss of Ca(2+) by stabilizing out-of-coordination distances of the cTnC's EF hand II residues, and in particular Ser 69.

摘要

处于钙离子激活状态的人类心肌肌钙蛋白分子(cTn)唯一可用的晶体结构并不包括关键片段,其中就有cTn抑制亚基(cTnI)的N端。我们应用全原子分子动力学(MD)模拟来研究cTn在未磷酸化状态以及cTnI的Ser23/Ser24位点双磷酸化状态下的结构与动力学。我们在一个包含人类序列cTnC(1-161)、cTnI(1-171)和cTnT(212-298)的419个氨基酸的cTn模型上,对野生型(WT)cTn(6个5微秒模拟)和双磷酸化(SP23/SP24)cTn(9微秒模拟)进行了多次微秒级MD模拟,该模型包括晶体结构中不存在的残基。我们已将结果与之前的计算研究进行了比较,并证明需要更长时间的模拟以及至少25埃的水盒,才能对天然状态和双磷酸化状态下有趣的构象变化进行采样。由于在模型中引入了之前研究中缺失的cTnT的C端,负责cTn动力学的cTnC-cTnI相互作用发生了改变。我们还表明,磷酸化不会增加cTn的波动,并且其对蛋白质-蛋白质相互作用谱的影响无法以显著方式进行评估。最后,我们提出磷酸化可能通过稳定cTnC的EF手型结构域II残基,特别是Ser 69的失配位距离,导致钙离子丢失。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验