Suppr超能文献

计算生物学领域的可重复性议程接下来何去何从?

Where next for the reproducibility agenda in computational biology?

作者信息

Lewis Joanna, Breeze Charles E, Charlesworth Jane, Maclaren Oliver J, Cooper Jonathan

机构信息

Centre for Maths and Physics in the Life Sciences and Experimental Biology, University College London, Physics Building, Gower Place, London, WC1E 6BT, UK.

NIHR Health Protection Research Unit in Modelling Methodology, Department of Infectious Disease Epidemiology, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.

出版信息

BMC Syst Biol. 2016 Jul 15;10(1):52. doi: 10.1186/s12918-016-0288-x.

Abstract

BACKGROUND

The concept of reproducibility is a foundation of the scientific method. With the arrival of fast and powerful computers over the last few decades, there has been an explosion of results based on complex computational analyses and simulations. The reproducibility of these results has been addressed mainly in terms of exact replicability or numerical equivalence, ignoring the wider issue of the reproducibility of conclusions through equivalent, extended or alternative methods.

RESULTS

We use case studies from our own research experience to illustrate how concepts of reproducibility might be applied in computational biology. Several fields have developed 'minimum information' checklists to support the full reporting of computational simulations, analyses and results, and standardised data formats and model description languages can facilitate the use of multiple systems to address the same research question. We note the importance of defining the key features of a result to be reproduced, and the expected agreement between original and subsequent results. Dynamic, updatable tools for publishing methods and results are becoming increasingly common, but sometimes come at the cost of clear communication. In general, the reproducibility of computational research is improving but would benefit from additional resources and incentives.

CONCLUSIONS

We conclude with a series of linked recommendations for improving reproducibility in computational biology through communication, policy, education and research practice. More reproducible research will lead to higher quality conclusions, deeper understanding and more valuable knowledge.

摘要

背景

可重复性概念是科学方法的基础。在过去几十年中,随着快速且强大的计算机的出现,基于复杂计算分析和模拟的结果呈爆发式增长。这些结果的可重复性主要是从精确复制或数值等效性方面进行探讨的,而忽略了通过等效、扩展或替代方法得出结论的更广泛的可重复性问题。

结果

我们利用自身研究经验中的案例研究来说明可重复性概念如何应用于计算生物学。多个领域已制定了“最低信息”清单,以支持对计算模拟、分析和结果进行全面报告,标准化的数据格式和模型描述语言有助于使用多个系统来解决相同的研究问题。我们指出了定义要重现结果的关键特征以及原始结果与后续结果之间预期一致性的重要性。用于发布方法和结果的动态、可更新工具越来越普遍,但有时会以清晰沟通为代价。总体而言,计算研究的可重复性正在提高,但还需要更多资源和激励措施。

结论

我们最后提出了一系列相互关联的建议,旨在通过沟通、政策、教育和研究实践来提高计算生物学中的可重复性。更具可重复性的研究将带来更高质量的结论、更深入的理解和更有价值的知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3ff/4946111/488a3c1f6a5c/12918_2016_288_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验