Rost Burkhard, Radivojac Predrag, Bromberg Yana
Department of Informatics and Bioinformatics, Institute for Advanced Studies, Technical University of Munich, Garching, Germany.
School of Informatics and Computing, Indiana University, Bloomington, IN, USA.
FEBS Lett. 2016 Aug;590(15):2327-41. doi: 10.1002/1873-3468.12307. Epub 2016 Aug 6.
Precision medicine and personalized health efforts propose leveraging complex molecular, medical and family history, along with other types of personal data toward better life. We argue that this ambitious objective will require advanced and specialized machine learning solutions. Simply skimming some low-hanging results off the data wealth might have limited potential. Instead, we need to better understand all parts of the system to define medically relevant causes and effects: how do particular sequence variants affect particular proteins and pathways? How do these effects, in turn, cause the health or disease-related phenotype? Toward this end, deeper understanding will not simply diffuse from deeper machine learning, but from more explicit focus on understanding protein function, context-specific protein interaction networks, and impact of variation on both.
精准医学和个性化健康研究致力于利用复杂的分子信息、病史和家族病史以及其他类型的个人数据来改善生活。我们认为,要实现这一宏伟目标,需要先进且专业的机器学习解决方案。仅仅从大量数据中获取一些现成的浅显结果,其潜力可能有限。相反,我们需要更深入地理解系统的各个部分,以确定与医学相关的因果关系:特定的序列变异如何影响特定的蛋白质和信号通路?这些影响又是如何反过来导致与健康或疾病相关的表型的?为此,更深入的理解并非仅仅源于更深入的机器学习,而是源于更明确地专注于理解蛋白质功能、特定背景下的蛋白质相互作用网络以及变异对两者的影响。