Suppr超能文献

精准医学中的蛋白质功能:通过机器学习深入理解

Protein function in precision medicine: deep understanding with machine learning.

作者信息

Rost Burkhard, Radivojac Predrag, Bromberg Yana

机构信息

Department of Informatics and Bioinformatics, Institute for Advanced Studies, Technical University of Munich, Garching, Germany.

School of Informatics and Computing, Indiana University, Bloomington, IN, USA.

出版信息

FEBS Lett. 2016 Aug;590(15):2327-41. doi: 10.1002/1873-3468.12307. Epub 2016 Aug 6.

Abstract

Precision medicine and personalized health efforts propose leveraging complex molecular, medical and family history, along with other types of personal data toward better life. We argue that this ambitious objective will require advanced and specialized machine learning solutions. Simply skimming some low-hanging results off the data wealth might have limited potential. Instead, we need to better understand all parts of the system to define medically relevant causes and effects: how do particular sequence variants affect particular proteins and pathways? How do these effects, in turn, cause the health or disease-related phenotype? Toward this end, deeper understanding will not simply diffuse from deeper machine learning, but from more explicit focus on understanding protein function, context-specific protein interaction networks, and impact of variation on both.

摘要

精准医学和个性化健康研究致力于利用复杂的分子信息、病史和家族病史以及其他类型的个人数据来改善生活。我们认为,要实现这一宏伟目标,需要先进且专业的机器学习解决方案。仅仅从大量数据中获取一些现成的浅显结果,其潜力可能有限。相反,我们需要更深入地理解系统的各个部分,以确定与医学相关的因果关系:特定的序列变异如何影响特定的蛋白质和信号通路?这些影响又是如何反过来导致与健康或疾病相关的表型的?为此,更深入的理解并非仅仅源于更深入的机器学习,而是源于更明确地专注于理解蛋白质功能、特定背景下的蛋白质相互作用网络以及变异对两者的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b796/5937700/c4dede6e9262/nihms962818f1.jpg

相似文献

10
DeepHE: Accurately predicting human essential genes based on deep learning.DeepHE:基于深度学习的人类必需基因精准预测。
PLoS Comput Biol. 2020 Sep 16;16(9):e1008229. doi: 10.1371/journal.pcbi.1008229. eCollection 2020 Sep.

引用本文的文献

本文引用的文献

2
Predicted Molecular Effects of Sequence Variants Link to System Level of Disease.序列变异的预测分子效应与疾病的系统水平相关。
PLoS Comput Biol. 2016 Aug 18;12(8):e1005047. doi: 10.1371/journal.pcbi.1005047. eCollection 2016 Aug.
8
Unexpected features of the dark proteome.黑暗蛋白质组的意外特征。
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15898-903. doi: 10.1073/pnas.1508380112. Epub 2015 Nov 17.
9
A global reference for human genetic variation.人类遗传变异的全球参考。
Nature. 2015 Oct 1;526(7571):68-74. doi: 10.1038/nature15393.
10
Deep Question Answering for protein annotation.用于蛋白质注释的深度问答
Database (Oxford). 2015 Sep 16;2015. doi: 10.1093/database/bav081. Print 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验