Suppr超能文献

评估在原发性人类非小细胞肺癌中鉴定出的STK11变体激酶活性的预测因子。

Evaluating predictors of kinase activity of STK11 variants identified in primary human non-small cell lung cancers.

作者信息

Chen Yile, Lee Kyoungyeul, Woo Junwoo, Kim Dong-Wook, Keum Changwon, Babbi Giulia, Casadio Rita, Martelli Pier Luigi, Savojardo Castrense, Manfredi Matteo, Shen Yang, Sun Yuanfei, Katsonis Panagiotis, Lichtarge Olivier, Pejaver Vikas, Seward David J, Kamandula Akash, Bakolitsa Constantina, Brenner Steven E, Radivojac Predrag, O'Donnell-Luria Anne, Mooney Sean D, Jain Shantanu

机构信息

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, 98105, WA, USA.

3billion, 3billion Biotechnology company, Seoul, South Korea.

出版信息

Res Sq. 2024 Jul 2:rs.3.rs-4587317. doi: 10.21203/rs.3.rs-4587317/v1.

Abstract

Critical evaluation of computational tools for predicting variant effects is important considering their increased use in disease diagnosis and driving molecular discoveries. In the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, a dataset of 28 STK11 rare variants (27 missense, 1 single amino acid deletion), identified in primary non-small cell lung cancer biopsies, was experimentally assayed to characterize computational methods from four participating teams and five publicly available tools. Predictors demonstrated a high level of performance on key evaluation metrics, measuring correlation with the assay outputs and separating loss-of-function (LoF) variants from wildtype-like (WT-like) variants. The best participant model, 3Cnet, performed competitively with well-known tools. Unique to this challenge was that the functional data was generated with both biological and technical replicates, thus allowing the assessors to realistically establish maximum predictive performance based on experimental variability. Three out of the five publicly available tools and 3Cnet approached the performance of the assay replicates in separating LoF variants from WT-like variants. Surprisingly, REVEL, an often-used model, achieved a comparable correlation with the real-valued assay output as that seen for the experimental replicates. Performing variant interpretation by combining the new functional evidence with computational and population data evidence led to 16 new variants receiving a clinically actionable classification of likely pathogenic (LP) or likely benign (LB). Overall, the STK11 challenge highlights the utility of variant effect predictors in biomedical sciences and provides encouraging results for driving research in the field of computational genome interpretation.

摘要

考虑到计算工具在疾病诊断和推动分子发现方面的应用日益增加,对预测变异效应的计算工具进行批判性评估至关重要。在基因组解释关键评估(CAGI)挑战赛的第六版中,对在原发性非小细胞肺癌活检中鉴定出的28个STK11罕见变异(27个错义变异、1个单氨基酸缺失)数据集进行了实验分析,以表征来自四个参与团队的计算方法和五个公开可用的工具。预测工具在关键评估指标上表现出较高水平,这些指标衡量与实验输出的相关性,并将功能丧失(LoF)变异与野生型样(WT样)变异区分开来。最佳参与者模型3Cnet与知名工具相比具有竞争力。本次挑战赛的独特之处在于,功能数据是通过生物学和技术重复生成的,因此评估者能够基于实验变异性切实确定最大预测性能。五个公开可用工具中的三个以及3Cnet在将LoF变异与WT样变异区分开来方面接近实验重复的性能。令人惊讶的是,常用模型REVEL与实值实验输出的相关性与实验重复的相关性相当。通过将新的功能证据与计算和群体数据证据相结合进行变异解释,使得16个新变异获得了可能致病(LP)或可能良性(LB)的临床可操作分类。总体而言,STK11挑战赛突出了变异效应预测工具在生物医学科学中的实用性,并为推动计算基因组解释领域的研究提供了令人鼓舞的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef1/11247923/adb778e89014/nihpp-rs4587317v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验