Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, USA.
Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
Sci Rep. 2016 Jul 18;6:29815. doi: 10.1038/srep29815.
Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V(-1)m(-1)) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices.
与电流驱动的自旋转移扭矩切换相反,电压诱导的磁化切换可以实现新的范例,从而实现超低功耗和高密度的即时非易失性磁电随机存取存储器(MeRAM)。然而,迄今为止,优化 MeRAM 器件性能的主要瓶颈是低电压控制的磁各向异性(VCMA)效率(单位电场下界面磁各向异性能的变化),这反过来又导致高切换能量和写入电压。在这项工作中,我们通过第一性原理电子结构计算表明,外延应变在 MeRAM 异质结构中普遍存在,导致 Au/FeCo/MgO 结中具有丰富多样的 VCMA 行为,具有巨大的 VCMA 系数(约 1800 fJ V(-1)m(-1))。该异质结构还表现出由非线性磁弹性耦合引起的应变诱导的自旋重新取向。结果表明,在重金属帽的磁性结中,VCMA 行为是普遍存在且稳健的,可以通过设计在低电压下实现电场驱动的磁切换。这些发现为利用应变工程为下一代 MeRAM 器件获取更高效率的 VCMA 开辟了有趣的前景。