Department of Physics and Astronomy, California State University Northridge, Northridge, California, 91330, USA.
MOE Key Laboratory of Microstructured Materials, School of Physics Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
Sci Rep. 2017 Jul 14;7(1):5366. doi: 10.1038/s41598-017-05611-7.
Electric-field-induced magnetic switching can lead to a new paradigm of ultra-low power nonvolatile magnetoelectric random access memory (MeRAM). To date the realization of MeRAM relies primarily on ferromagnetic (FM) based heterostructures which exhibit low voltage-controlled magnetic anisotropy (VCMA) efficiency. On the other hand, manipulation of magnetism in antiferromagnetic (AFM) based nanojunctions by purely electric field means (rather than E-field induced strain) remains unexplored thus far. Ab initio electronic structure calculations reveal that the VCMA of ultrathin FeRh/MgO bilayers exhibits distinct linear or nonlinear behavior across the AFM to FM metamagnetic transition depending on the Fe- or Rh-interface termination. We predict that the AFM Fe-terminated phase undergoes an E-field magnetization switching with large VCMA efficiency and a spin reorientation across the metamagnetic transition. In sharp contrast, while the Rh-terminated interface exhibits large out-of-plane (in-plane) MA in the FM (AFM) phase, its magnetization is more rigid to external E-field. These findings demonstrate that manipulation of the AFM Néel-order magnetization direction via purely E-field means can pave the way toward ultra-low energy AFM-based MeRAM devices.
电场诱导的磁开关可以带来超低功耗非易失性磁电随机存取存储器 (MeRAM) 的新范例。迄今为止,MeRAM 的实现主要依赖于表现出低电压控制磁各向异性 (VCMA) 效率的基于铁磁 (FM) 的异质结构。另一方面,通过纯粹的电场手段(而不是 E 场诱导应变)来操纵基于反铁磁 (AFM) 的纳米结中的磁性迄今仍未得到探索。从头算电子结构计算表明,在 AFM 到 FM 顺磁转变过程中,超薄 FeRh/MgO 双层的 VCMA 表现出明显的线性或非线性行为,具体取决于 Fe 或 Rh 界面的终止。我们预测 AFM Fe 终止相将经历具有大 VCMA 效率的 E 场磁化开关以及在顺磁转变过程中的自旋重定向。相比之下,虽然 Rh 终止界面在 FM (AFM) 相中表现出大的面外 (面内) MA,但它的磁化对外电场更具刚性。这些发现表明,通过纯粹的电场手段操纵 AFM 奈尔有序磁化方向可以为超低能量基于 AFM 的 MeRAM 器件铺平道路。