Department of Electrical Engineering, ‡Department of Materials Science and Engineering, §Department of Applied Physics, and ∥Precourt Institute for Energy, Stanford University , Stanford, California 94305, United States.
ACS Nano. 2016 Aug 23;10(8):7507-14. doi: 10.1021/acsnano.6b02368. Epub 2016 Jul 28.
Two-dimensional (2D) semimetals beyond graphene have been relatively unexplored in the atomically thin limit. Here, we introduce a facile growth mechanism for semimetallic WTe2 crystals and then fabricate few-layer test structures while carefully avoiding degradation from exposure to air. Low-field electrical measurements of 80 nm to 2 μm long devices allow us to separate intrinsic and contact resistance, revealing metallic response in the thinnest encapsulated and stable WTe2 devices studied to date (3-20 layers thick). High-field electrical measurements and electrothermal modeling demonstrate that ultrathin WTe2 can carry remarkably high current density (approaching 50 MA/cm(2), higher than most common interconnect metals) despite a very low thermal conductivity (of the order ∼3 Wm(-1) K(-1)). These results suggest several pathways for air-stable technological viability of this layered semimetal.
二维(2D)半金属在原子薄极限下的研究相对较少。在这里,我们引入了一种简便的生长机制来制备半金属 WTe2 晶体,然后在小心避免暴露于空气中而降解的情况下制造出了少层测试结构。对 80nm 到 2μm 长器件的低场电测量允许我们分离出本征电阻和接触电阻,从而揭示了迄今为止研究过的最薄封装和最稳定的 WTe2 器件(3-20 层厚)的金属响应。高场电测量和电热模拟表明,尽管热导率非常低(约为 3 Wm-1 K-1),但超薄 WTe2 可以承载非常高的电流密度(接近 50 MA/cm2,高于大多数常见的互连金属)。这些结果表明,这种层状半金属在空气稳定的技术可行性方面有几种途径。