Suppr超能文献

用于纳米级电气互连的电稳健单晶WTe纳米带

Electrically Robust Single-Crystalline WTe Nanobelts for Nanoscale Electrical Interconnects.

作者信息

Song Seunguk, Kim Se-Yang, Kwak Jinsung, Jo Yongsu, Kim Jung Hwa, Lee Jong Hwa, Lee Jae-Ung, Kim Jong Uk, Yun Hyung Duk, Sim Yeoseon, Wang Jaewon, Lee Do Hee, Seok Shi-Hyun, Kim Tae-Il, Cheong Hyeonsik, Lee Zonghoon, Kwon Soon-Yong

机构信息

School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea.

Department of Physics Sogang University Seoul 04107 Republic of Korea.

出版信息

Adv Sci (Weinh). 2018 Dec 12;6(3):1801370. doi: 10.1002/advs.201801370. eCollection 2019 Feb 6.

Abstract

As the elements of integrated circuits are downsized to the nanoscale, the current Cu-based interconnects are facing limitations due to increased resistivity and decreased current-carrying capacity because of scaling. Here, the bottom-up synthesis of single-crystalline WTe nanobelts and low- and high-field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top-down approach, the bottom-up growth mode of WTe nanobelts allows systemic characterization of the electrical properties of WTe single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe devices under vacuum and with AlO capping layer follows an ideal pattern for Joule heating, far from edge scattering. High-field electrical measurements and self-heating modeling demonstrate that the WTe nanobelts have a breakdown current density approaching ≈100 MA cm, remarkably higher than those of conventional metals and other transition-metal chalcogenides, and sustain the highest electrical power per channel length (≈16.4 W cm) among the interconnect candidates. The results suggest superior robustness of WTe against high-bias sweep and its possible applicability in future nanoelectronics.

摘要

随着集成电路元件尺寸缩小至纳米尺度,由于缩放导致电阻率增加和载流能力下降,当前基于铜的互连面临着局限性。在此,报道了单晶WTe纳米带的自下而上合成以及在各种环境条件下纳米尺度互连测试结构的低场和高场电学表征。与通过自上而下方法获得的剥离薄片不同,WTe纳米带的自下而上生长模式允许系统地表征WTe单晶的电学性质作为通道尺寸的函数。使用一维热传输模型和幂律,确定在真空和有AlO覆盖层的情况下WTe器件的击穿遵循焦耳加热的理想模式,远离边缘散射。高场电学测量和自热建模表明,WTe纳米带的击穿电流密度接近≈100 MA/cm,显著高于传统金属和其他过渡金属硫族化物,并且在互连候选材料中每通道长度维持最高电功率(≈16.4 W/cm)。结果表明WTe在高偏置扫描下具有卓越的稳健性及其在未来纳米电子学中的可能适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29bc/6364501/3705a3bdf54b/ADVS-6-1801370-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验